Бетонирование в зимних условиях

Бетонирование в зимних условиях

Р-НП СРО ССК-02-2015
(взамен Р-НП СРО ССК-02-2014)

РЕКОМЕНДАЦИИ ПО ПРОИЗВОДСТВУ БЕТОННЫХ РАБОТ В ЗИМНИЙ ПЕРИОД

Дата введения в действие: 2016-04-16

АННОТАЦИЯ

Настоящие рекомендации разработаны в рамках Программы стандартизации Национального объединения строителей и направлены на реализацию Градостроительного кодекса Российской Федерации, Федеральных законов Российской Федерации от 27 декабря 2002 года N 184-ФЗ “О техническом регулировании”, от 30 декабря 2009 года N 384-ФЗ “Технический регламент о безопасности зданий и сооружений”, постановления Правительства Российской Федерации от 21 июня 2010 года N 468 “О порядке проведения строительного контроля при осуществлении строительства, реконструкции и капитального ремонта объектов капитального строительства”, приказа Министерства регионального развития Российской Федерации от 30 декабря 2009 года N 624 “Об утверждении Перечня видов работ по инженерным изысканиям, по подготовке проектной документации, по строительству, реконструкции, капитальному ремонту объектов капитального строительства, которые оказывают влияние на безопасность объектов капитального строительства” и иных законодательных и нормативных правовых актов, действующих в области градостроительной деятельности.

Настоящие рекомендации разработаны в развитие СТО НОСТРОЙ 2.6.54-2011 “Конструкции монолитные бетонные и железобетонные. Технические требования к производству работ, правила и методы контроля” для выработки единых требований по производству и контролю качества бетонных работ в зимнее время.

В основу рекомендаций положены результаты научных исследований, выполненных на кафедре технологии строительного производства Южно-Уральского государственного университета и других научно-исследовательских, учебных и производственных организаций Российской Федерации, а также накопленный опыт отечественного и зарубежного строительства в области зимнего бетонирования. Требования настоящих рекомендаций до введения их в действие прошли апробацию в строительных организациях Челябинской области.

Авторский коллектив: доктор технических наук, профессор, член-корреспондент Российской академии архитектуры и строительных наук, заслуженный деятель науки Российской Федерации, почетный строитель России Головнев Станислав Георгиевич, кандидат технических наук, доцент Пикус Григорий Александрович, доктор технических наук, доцент Байбурин Альберт Халитович (кафедра технологии строительного производства федерального государственного бюджетного образовательного учреждения высшего профессионального образования “Южно-Уральский государственный университет” (национальный исследовательский университет)), почетный строитель России Ефименко Евгений Борисович, кандидат технических наук Мозгалёв Кирилл Михайлович (управление регионального государственного строительного надзора Министерства строительства и инфраструктуры Челябинской области), почетный строитель России Абаимов Александр Иванович (Челябинский межрегиональный союз строителей), почетный строитель России Десятков Юрий Васильевич (некоммерческое партнерство “Саморегулируемая организация Союз строительных компаний Урала и Сибири”).

Рекомендации (первая редакция) введены в действие Комитетом по разработке стандартов и правил некоммерческого партнерства “Саморегулируемая организация Союз строительных компаний Урала и Сибири”, протокол N 18 от 16.09.2014 г.

Рекомендации одобрены управлением регионального государственного строительного надзора Министерства строительства и инфраструктуры Челябинской области для практического применения их при строительстве, реконструкции объектов капитального строительства на территории Челябинской области, протокол N 17 от 23.09.2014 г.

Рекомендации (вторая редакция) введены в действие Комитетом по разработке стандартов и правил некоммерческого партнерства “Саморегулируемая организация Союз строительных компаний Урала и Сибири”, протокол N 16 от 14.09.2015 г.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1 Рекомендации распространяются на производство бетонных работ в зимний период при устройстве всех видов бетонных и железобетонных конструкций, применяемых в гражданском и промышленном строительстве, изготовляемых на строительной площадке из тяжелых бетонов и ненапрягаемой арматуры.

Примечание – Зимним периодом, в соответствии с СП 70.13330, считается период, когда среднесуточная температура наружного воздуха ниже +5°С, а минимальная суточная температура ниже 0°С.

1.2 Настоящие рекомендации содержат основные требования к технологическим процессам, условиям производства работ и порядку контроля их выполнения.

1.3 Рекомендации содержат общие требования к процессам компьютерного контроля температуры и прочности бетона, а также способам выполнения отдельных этапов контроля и их документированию.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящих рекомендациях используются нормативные ссылки на следующие стандарты и своды правил:

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181-2000 Смеси бетонные. Методы испытаний

ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности

ГОСТ 22690-88 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 26633-2012 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

ГОСТ 31384-2008 Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования

СНиП 12-03-2001 “Безопасность труда в строительстве. Часть 1. Общие требования”

СП 28.13330.2012 “СНиП 2.03.11-85 Защита строительных конструкций от коррозии”

СП 48.13330.2011 “СНиП 12-01-2004 Организация строительства”

СП 63.13330.2012 “СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения”

СП 70.13330.2012 “СНиП 3.03.01-87 Несущие и ограждающие конструкции”

СП 131.13330.2012 “СНиП 23-01-99 Строительная климатология”

СТО НОСТРОЙ 2.6.54-2011 Конструкции монолитные бетонные и железобетонные. Технические требования к производству работ, правила и методы контроля

Примечание – При пользовании настоящими рекомендациями целесообразно проверить действие ссылочных нормативных документов в информационной системе общего пользования – на официальных сайтах национального органа Российской Федерации по стандартизации, Ассоциации “Национальное объединение строителей” и некоммерческого партнерства “Саморегулируемая организация Союз строительных компаний Урала и Сибири” в сети Интернет или по ежегодно издаваемым информационным указателям, опубликованным по состоянию на 1 января текущего года. Если ссылочный нормативный документ заменен (изменен, актуализирован), то при пользовании настоящими рекомендациями следует руководствоваться новым (измененным) нормативным документом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ И ОБОЗНАЧЕНИЯ

3.1 В настоящих рекомендациях применены следующие термины с соответствующими определениями:

3.1.1 активный метод: Метод термообработки, при котором тепловое воздействие осуществляется в период выдерживания бетона.

3.1.2 бетонная смесь: Готовая к применению перемешанная однородная смесь вяжущего, заполнителей и воды с добавлением или без добавления химических и минеральных добавок, которая после уплотнения, схватывания и твердения превращается в бетон.

[ГОСТ 7473-2010, пункт 3.1]

3.1.3 бетонные работы: Комплекс работ по приготовлению, транспортировке, укладке и выдерживанию бетона в различных условиях окружающей среды.

3.1.4 зимнее бетонирование: Производство бетонных работ в зимний период.

3.1.5 зимний период: Время года с ожидаемой среднесуточной температурой наружного воздуха ниже +5°С и минимальной суточной температурой ниже 0°С.

3.1.6 класс бетона по прочности в проектном возрасте: Значение класса бетона, указанное в документе о качестве бетонной смеси.

Примечание – Форма и содержание документа о качестве бетонной смеси установлены ГОСТ 7473.

3.1.7 компьютерный температурно-прочностной контроль: Оценка, прогнозирование и документирование параметров твердения бетона с использованием компьютерных программ.

3.1.8 критическая прочность , %: Прочность бетона, после достижения которой замораживание уже не вносит необратимых нарушений в структуру бетона, а бетон в нормальных условиях набирает нормируемую прочность.

3.1.9 массивность конструкции: Взаимосвязь геометрических характеристик бетонной конструкции и распределения температуры внутри бетона за счет теплопроводности.

3.1.10 метод зимнего бетонирования: Виды теплового или иного воздействия на бетонную смесь или бетон с целью получения критической, промежуточной, распалубочной прочности, прочности бетона при поэтапном загружении или проектных характеристик бетона в зимних условиях.

3.1.11 модуль поверхности конструкции , м : Характеристика массивности конструкции, равная отношению площади охлаждаемой поверхности конструкции к ее объему.

3.1.12 монолитная бетонная конструкция: Элемент здания или сооружения, выполняемый из бетонной смеси непосредственно в проектном положении без рабочей арматуры.

[СТО НОСТРОЙ 2.6.54-2011, пункт 3.2.8]

3.1.13 монолитная железобетонная конструкция: Элемент здания или сооружения, выполняемый из бетонной смеси непосредственно в проектном положении с установкой рабочей арматуры.

[СТО НОСТРОЙ 2.6.54-2011, пункт 3.2.9]

3.1.14 нормальные условия твердения бетона: Температура окружающей среды (20±2)°С и относительная влажность (95±5)%.

3.1.15 нормируемое значение прочности бетона: Прочность бетона в проектном возрасте или ее доля в промежуточном возрасте, установленная в нормативном или техническом документе, по которому изготавливают бетонную смесь или конструкцию.

3.1.16 пассивный метод: Метод, при котором отсутствует термообработка бетона или тепловое воздействие происходит только на этапе нагрева бетонной смеси до ее укладки в конструкцию.

3.1.17 партия бетонной смеси: Объем бетонной смеси одного номинального состава, изготовленный или уложенный за определенное время.

[ГОСТ 18105-2010, пункт 3.1.7]

3.1.18 промежуточная прочность: Прочность бетона на определенном этапе выдерживания бетона.

3.1.19 прочность при поэтапном загружении: Прочность бетона, определяемая с учетом допустимой интенсивности загружения конструкций при их выдерживании.

3.1.20 распалубочная прочность , %: Прочность бетона, при которой осуществляется снятие опалубки с поверхностей конструкции.

3.1.21 текущий контроль: Контроль прочности бетона партии бетонной смеси или конструкций, при котором значения фактической прочности и однородности бетона по прочности рассчитывают по результатам контроля этой партии.

3.1.22 текущая прочность: Прочность бетона монолитных конструкций в конкретный момент времени в процессе выдерживания в зимних условиях.

3.1.23 температурные напряжения: Напряжения, возникающие в бетоне вследствие изменения температуры или неравномерного ее распределения по сечению монолитных конструкций.

3.1.24 температурный режим: Проектное и (или) фактическое изменение температуры бетона во времени на разных этапах выдерживания бетона.

3.1.25 требуемая прочность бетона в проектном возрасте: Минимально допустимое среднее значение прочности бетона в контролируемых партиях бетонной смеси или конструкций, соответствующее нормируемой прочности бетона при ее фактической однородности.

3.1.26 трёхсуточная прочность бетона, , МПа: Прочность бетона в возрасте трёх суток при его выдерживании в нормальных условиях твердения.

3.1.27 фактический класс бетона по прочности: Значение класса бетона по прочности монолитных конструкций, рассчитанное по результатам определения фактической прочности бетона и ее однородности в контролируемой партии.

[ГОСТ 18105-2010, пункт 3.1.3]

3.1.28 фактическая прочность бетона: Среднее значение прочности бетона в партиях бетонной смеси или конструкций, рассчитанное по результатам ее определения в контролируемой партии.

[ГОСТ 18105-2010, пункт 3.1.4]

3.2 Основные обозначения, принятые в настоящих рекомендациях, приведены в таблице 3.1.

Как сделать зимний бетон не хуже летнего. Методы зимнего бетонирования

Климатические условия в большинстве регионов России не позволяют вести бетонные работы при положительных температурах круглый год.

Во многих районах более 6 месяцев в году держатся низкие температуры, вот почему осуществляется зимнее бетонирование.

Что такое зимнее бетонирование

Согласно СП 70.13330, зимним называется бетонирование при среднесуточных температурах ниже 5°С или минимальных суточных температурах ниже 0°С.

Есть ли плюсы у зимних бетонных работ

В целом работа с бетоном в суровых условиях низких температур влечет дополнительные сложности, но невозможно прекращать стройку на полгода всякий раз с наступлением осени, к тому же, у зимних работ есть и существенные плюсы:

  1. Зимние скидки на строительные материалы и спад востребованности рабочей силы позволяют сэкономить.
  2. Зимой можно бетонировать фундаменты на слабом или хрупком грунте.
  3. Замерзшие подъездные пути позволяют без проблем доставить на стройку тяжелую технику и материалы.

Особенности зимнего бетонирования

Зимой основной враг качественного бетонирования – низкие температуры, которые оказывают негативное влияние на процессы, происходящие как при бетонировании, так и при твердении бетона.

Образование твердого вещества – бетона – происходит в результате реакции гидратации минералов, входящих в состав портландцемента. Чтобы эта реакция шла, необходима температура выше 0°С, поскольку при отрицательных температурах вода замерзает, и реакция гидратации прекращается.

Уже при температуре ниже 5°С скорость протекания реакции резко тормозится, и набор прочности бетона замедляется.

Низкие температуры вызывают следующие проблемы:

  1. прекращение реакции гидратации;
  2. рост внутреннего давления из-за промерзания и связанного с ним расширения материала;
  3. образование кристаллов льда вокруг арматуры, что приводит к плохому сцеплению ее с бетоном;
  4. получение бетона низкой прочности.

Основная задача зимой – обеспечить набор критической прочности бетона (30–50% от проектной прочности), после чего отрицательные температуры уже не оказывают негативного воздействия на бетон. Как правило, в оптимальных условиях критическая прочность достигается на 4–6-й день после укладки.

Поэтому зимой главное значение приобретает температура.

Температуру бетонной смеси измеряют до укладки, во время и после.

Для зимнего бетонирования рекомендуется использование портландцементов и высокомарочных быстротвердеющих цементов.

Технология бетонирования в зимних условиях

В составе проекта производства работ разрабатываются мероприятия, которые обеспечивают:

  1. Предотвращение замерзания бетонного раствора в период транспортировки, укладки и уплотнения.
  2. Предупреждение замерзания свежеуложенного бетона вплоть до достижения критической прочности.
  3. Благоприятные тепло-влажностные условия набора прочности твердеющего бетона.

Приготовление бетона зимой. Меры предотвращения замерзания готовой бетонной смеси при транспортировке, укладке и уплотнении

Готовая бетонная смесь, поступающая на стройку, должна иметь температуру не ниже 5°С. Для этого замешивание производят на теплой (до 70°С) воде, а заполняющие материалы прогревают.

Цемент не подвергают прогреванию во избежание заваривания. Время транспортировки готового бетонного раствора не должно превышать 4 часов.

Поверхности под бетонирование и арматура должны быть прогреты близко к температуре бетонного раствора, для чего используется теплый или горячий воздух, но не пар и не вода.

При длительной транспортировке готовой бетонной смеси и невозможности использовать подогрев, применяют противоморозные добавки.

Меры предупреждения промораживания бетона до достижения критической прочности

Различают два основных метода зимнего бетонирования:

Холодным называется бетон, который будет твердеть без подогревающих мероприятий. Обеспечить его твердение призваны специальные противоморозные добавки, которые снижают температуру замерзания воды и одновременно ускоряют реакции гидратации с тем, чтобы количество несвязанной воды в растворе как можно быстрее уменьшалось.

Читайте также:  Как бороться с коррозией метала

Широко распространенные противоморозные присадки – электролиты, соли Na и K, но их применение имеет некоторые ограничения:

  1. натриевые соли не применяют в армированном бетоне, поскольку они приводят к коррозии арматуры;
  2. некоторые виды портландцемента (например, высокощелочные или полученные из клинкера с высоким содержанием алюмосиликатов) не применяются совместно с электролитами;
  3. соли натрия и калия не применяются в смесях с заполнителем потенциально реакционно-способных пород;
  4. соли-электролиты должны проверяться опытным путем на образование высолов.

Современные комплексные противоморозные добавки не имеют недостатков солей-электролитов, обеспечивают возможность вести бетонные работы при низких температурах и обладают комплексным действием (не только противоморозным, но и пластифицирующим и другими).

Теплым называют бетон, который после укладки подвергается различным прогревающим и обогревающим процедурам.

Методы прогрева бетона

После того, как бетон уложен и уплотнен, необходимо поддерживать оптимальную температуру до достижения критической прочности, для чего применяют три вида мероприятий:

  1. метод термоса;
  2. устройство тепляков;
  3. прогрев бетона.

Эти мероприятия применяются как самостоятельно, так и в сочетании с противоморозными добавками.

Выбор метода производится в зависимости от многих факторов:

  1. тип конструкции;
  2. состав бетонной смеси;
  3. наличие и тип арматуры;
  4. наличие или отсутствие соответствующего оборудования;
  5. экономическая целесообразность.

Сохранение тепла или «метод термоса»

Метод термоса применяется в массивных конструкциях самостоятельно или в сочетании с добавками-ускорителями. Ускорители способствуют более быстрому отвердеванию бетона, а значит, критическая прочность будет набрана быстрее.

Реакция гидратации является экзотермической, то есть, протекает с выделением тепла.

В массивных конструкциях тепла выделяется достаточно для обогрева, поэтому, если заливать бетон в утепленную опалубку, а после заливки укрыть пленкой ПВХ и теплоизолирующими материалами (маты, рулонные материалы, доски, пенопласт), бетон будет сохранять температуру, подходящую для твердения вплоть до набора критической прочности.

  1. экономия электроэнергии;
  2. использование собственного тепла бетона;
  3. относительная простота.

Недостатки метода термоса:

  1. применение только в массивных конструкциях;
  2. неэффективность при особо низких температурах (решается добавлением противоморозных добавок);
  3. не подходит для конструкций с большой площадью поверхности охлаждения.

Метод «горячего сухого термоса»

В этом случае можно укладывать бетон на промороженное основание без подогрева. В утепленную опалубку насыпается слой керамзита, разогретого до температуры 200–300°С, а после его остывания до 100°С выполняется укладка бетона, замешанного на теплой воде. В результате тепло остывающего керамзита используется для подогрева бетона.

Устройство тепляков

Тепляки – это своеобразные шатры, которые устанавливаются над замоноличенными конструкциями. Внутри тепляков устанавливают тепловые пушки в таком количестве, чтобы обеспечить необходимую температуру твердения (выше 5°С). Особенную важность имеет герметичность укрытия.

Методы искусственного прогрева бетона

Наиболее высокая скорость твердения бетона при температуре 50°С.

Обеспечить расчетную температуру отвердевания бетона до достижения критической прочности можно, применяя искусственный нагрев бетона различными методами:

  1. Электродный. Внутри опалубки закрепляются электроды, которые могут быть пластинчатыми, полосовыми, стержневыми, струнными. Тепло выделяется при пропускании тока через бетонную смесь.
  2. Кондуктивный (контактный). Тепло выделяется в проводнике при прохождении через него тока и передается бетонной смеси.
  3. Инфракрасный. ИК-излучение используется для прогрева основания, арматуры и нагревания бетона без переносчика тепла.
  4. Индукционный. Тепло выделяется арматурой, находящейся в электромагнитном поле индуктора.

Недостаток методов – необходимость использования дорогостоящего оборудования и электроэнергии.

Применение противоморозных и ускоряющих добавок позволяет бетону быстрее набирать критическую прочность и таким образом экономить электроэнергию и повышать оборачиваемость оборудования.

Заливка бетона зимой технически сложными способами

Целесообразно использование технически сложных способов зимнего бетонирования с применением утепленной опалубки, электродов для подогрева, укладки нагревающего кабеля и т.д. Эти методы требуют проведения тщательных предварительных расчетов.

Зимний бетон в домашних условиях

При домашнем строительстве бетонирование в условиях отрицательных температур допустимо для объектов невысокой важности.

Для самостоятельных работ используют замес на подогретой (не выше 70°С) воде.

Порядок закладки компонентов бетонной смеси меняют: сначала в воду засыпают крупный заполнитель, затем песок и цемент.

Совет: Зимой рекомендуется применять портландцемент марки не ниже М400.

В домашних условиях применение прогрева бетона или устройства тепляков не выгодно; на первый план выходят специальные противоморозные добавки, которые позволяют успешно проводить бетонные работы в зимнее время.

Можно ли добавлять в бетон соль и модифицирующие добавки?

В зимнее время для понижения температуры замерзания свободной воды в бетонный раствор добавляют соль (хлорид натрия) или другие соли натрия и калия, которые работают как электролиты.

Применение солей может привести к коррозии арматуры и появлению высолов на готовом бетоне. Оптимальный вариант – использование комплексных противоморозных добавок и пластификаторов.

Возможные последствия зимнего бетонирования

Несоблюдение технологий укладки бетона зимой приводит к получению бетонных изделий пониженной прочности, с трещинами, высолами и прочими дефектами, а также к плохому сцеплению с арматурой. Изделия получаются недолговечными в эксплуатации.

Следует помнить, что критическая прочность бетона составляет 30–50% от расчетной прочности, а распалубочная – 70%. После достижения бетоном критической прочности мороз ему уже не вредит, и меры по обогреву можно сворачивать. Но в этот момент еще нельзя производить распалубку и давать нагрузку на бетон.

Бетонные работы зимой – чаще всего, вынужденная мера, но и в этом случае есть свои преимущества. При выборе технологии проведения зимних работ учитываются многие факторы: тип конструкций, состав бетонной смеси, наличие оборудования и экономический эффект от их применения. Противоморозные добавки желательны к применению при выборе любого метода ведения бетонных работ зимой.

Бетонирование зимой: способы, особенности, необходимые мероприятия

Особенности зимнего бетонирования

Существуют две важные причины, усложняющие процесс укладки бетона зимой.

  • При низких температурах замедляется процесс гидратации цемента, что является причиной увеличения роков набора твердости бетоном. Полный набор прочности бетона при применении противоморозной добавки наступает через 90 суток при расчетной температуре отведения бетона 0 °С, согласно рекомендациям по применению противоморозных добавок в бетон.

Рост прочности бетонов с противоморозной добавкой:

Расчетная температура
отвердения бетона по С
Прочность бетона % от проектной.
При отвердении на морозе за период времени, суток
7142890
355075100
-525356090
-1015254570
-155153550
-2520305060

При минусовых температурах ниже -15°С до -25°С наряду с противоморозными добавками применяются ускорители твердения бетонной смеси. Этот комплекс вводимых добавок позволяет экзотермической реакции цемента, добавок и воды выделить большее количество тепла, существенно ускорить гидратацию цемента (т.е. использовать для реакции максимальное количество воды и сохранить температуру за счет выделяемого тепла при реакции), что улучшает набор первоначальной прочности бетона при отрицательных температурах.

При температуре окружающей среды равной 20°С, в течение недели бетон набирает около 70% проектной прочности. При понижении температуры до 5°С для набора такого уровня прочности потребуется времени в 3-4 раза больше.

  • Еще одним нежелательным процессом является развитие сил внутреннего давления, которые возникают из-за расширения замерзшей воды. Это явление приводит к разупрочнению бетона. Помимо этого, из замерзшей воды вокруг заполнителей образуются ледяные пленки, нарушающие связь между компонентами смеси. Поэтому категорически запрещается добавление воды в бетонную смесь на строительной площадке, особенно в холодный период времени, т.к. подвижность бетонной смеси регулируется пластифицирующими хим. добавками для сохранения водоцементного соотношения в бетонной смеси.

При замерзании воды в порах твердеющей смеси развивается значительное давление, которое приводит к разрушению структуры неокрепшего бетона и снижению его прочностных характеристик.

Снижение прочности тем значительнее, чем в более раннем возрасте бетона замерзла вода. Наиболее опасным является период схватывания бетонной смеси. Если смесь замерзнет сразу после укладки ее в опалубку, то ее прочность при отрицательных температурах будет обусловлена только силами замерзания. При повышении температуры процесс гидратации цемента возобновится, но прочность такого бетона будет значительно уступать аналогичной характеристике материала, который не подвергался замораживанию.

Противостоять замораживанию без структурных разрушений может только бетон, который уже набрал определенное значение прочности. Важно соблюдать правило беспрерывной укладки бетона во избежание холодных швов.

В современном строительстве в мировой практике наиболее распространен способ зимнего бетонирования, когда бетонная смесь предохраняется от замерзания во время ее схватывания и набора определенной величины прочности, которая называется критической.
Под критической величиной прочности бетона принимают прочность, которая равна 50% от марочной. В конструкциях ответственного назначения бетон предохраняется от замерзания до достижения 70% от проектной прочности.

В современном строительстве применяют несколько способов бетонирования в зимний период:

  • использование добавок противоморозного действия;
  • укрытие бетонной смеси пленкой ПВХ и другими утеплителями;
  • электрический и инфракрасный прогрев бетона;
  • сооружение временного укрытия с прогревом тепловыми пушками.

Если будет использоваться прогрев тепловыми пушками, то укрытие из пленки ПВХ укладывается не на поверхность бетона, а на временный каркас из досок, брусков и т.п. Создается нечто наподобие низкой «палатки» или «шатра» над бетонной конструкцией и под это укрытие ставятся тепловые пушки. Чем выше будет температура под шатром, тем быстрее будет идти процесс набора прочности, и соответственно, раньше можно будет прекратить прогрев. В большинстве случаев, для первичного набора прочности бетона, достаточной для проведения дальнейших работ, хватает 1-3 суток прогрева тепловыми пушками. За это время бетон может набрать до 50% марочной прочности.

Применения добавок противоморозного действия

Технологически наиболее удобным и экономически выгодным методом проведения зимнего бетонирования является применение противоморозных добавок. Этот способ гораздо дешевле бетонирования с прогревом электричеством и инфракрасными лучами.

Существует довольно много мифов относительно вредности и полезности тех или иных противоморозных добавок для бетонов. Им приписывают и коррозию арматуры, и снижение прочности, и снижение морозостойкости. Это не так. Многие из противоморозных добавок, наоборот, являются ингибитором коррозии, положительно влияют на сцепляемость арматуры с бетоном. При нормальном % введении добавок в бетон наблюдается некоторое отставание в темпах набора прочности, но по достижении 28 суточного возраста часто наблюдается больший прирост марочной прочности именно у бетонов с противоморозными добавками.

Модификаторы противоморозного действия могут использоваться как самостоятельно, так и в сочетании с различными методами подогрева.

Все существующие «зимние» добавки в бетон можно разделить на три основные группы.

  • К первой группе относят добавки, которые либо слабо ускоряют, либо слабо замедляют процессы схватывания и твердения смеси. Представители этого класса – сильные и слабые электролиты, неэлектролиты и составы органического происхождения – карбамид и многоатомные спирты.
  • Ко второй группе принадлежат модификаторы на основе хлорида кальция. Эти вещества имеют способность сильно ускорять процессы схватывания и твердения и обладают значительными антифризными свойствами.
  • В третью группу входят вещества, обладающие слабыми антифризными свойствами, но являющиеся сильными ускорителями схватывания и твердения с сильным тепловыделением сразу после заливки. Сфера применения этих добавок невелика, но они представляют интерес с научной точки зрения. К таким добавкам относятся трехвалентные сульфаты на основе алюминия и железа.

Мероприятия, увеличивающие эффективность применения противоморозных добавок

Противоморозные добавки выполняют важную роль – активируют процессы твердения смеси и снижают температуру замерзания жидкой фазы. Но для получения эффективного результата, наряду с использование модификаторов, необходимо выполнять ряд сопутствующих мероприятий.

  • Созданию внутренней теплоты в бетонной смеси способствует предварительный прогрев ее компонентов.
  • После окончания укладки поверхность бетона необходимо утеплить матами, что позволит сохранить тепло, выделенное в результате экзотермической реакции цемента и воды, и сохранить условия, подходящие для твердения.
  • Зимой наиболее эффективно использовать портландцементы и высокомарочные быстротвердеющие цементы.

При изготовлении бетонной смеси из подогретых компонентов применяют иной порядок загрузки всех элементов, чем в традиционных летних условиях, когда все сухие составляющие одновременно загружаются в заполненный водой барабан смесителя. Зимой, чтобы избежать заваривания цемента, сначала в барабан заливают воду, затем засыпают крупный заполнитель, а потом проворачивают барабан несколько оборотов и засыпают песок и цемент.

Продолжительность перемешивания компонентов в зимнее время должна быть увеличена примерно в полтора раза.

  • Места погрузки и выгрузки бетонной смеси необходимо изолировать от воздействия ветра, а средства подачи смеси – тщательно утеплить.
  • Опалубка и арматура должны быть очищены от снега и наледи, арматуру необходимо отогреть до положительной температуры.
  • Обязательное условие зимнего бетонирования – быстрые темпы его проведения, для минимизации потери тепла в бетонной смеси, так как гидратация цемента в смеси наступает через сорок минут после затворения.

Метод «термоса»

Технологически метод «термоса» осуществляется укладкой смеси положительной температуры в утепленную опалубку. Бетон набирает прочность благодаря начальному теплосодержанию и экзотермическому выделению при реакции гидратации цемента.

Максимальное тепловыделение обеспечивают портландцементы и высокомарочные цементы. Особо эффективен метод «термоса» в сочетании с противоморозными добавками.

Читайте также:  Изготовление металлических дверей

Бетонирование методом «горячего термоса» заключается в кратковременном прогреве смеси до 60-80°С, уплотнении ее в горячем состоянии и выдерживании в «термосе» или с применением дополнительного подогрева.

В условиях строительной площадки бетонную смеси разогревают с помощью электродов. Смесь выступает в цепи переменного электротока в роли сопротивления. Электропрогрев проводят в кузовах автосамосвалов или бадьях.

Способы искусственного нагрева и прогрева бетона

Сущность этого метода заключается в создании и дальнейшем поддержании температуры смеси при максимально допустимой величине, пока бетон не наберет требуемую прочность. Этот способ применяется в случаях, когда метода «термоса» оказывается недостаточно.

Существует несколько вариантов достижения требуемого результата:

  • Физический смысл электродного прогрева аналогичен вышеописанному методу электродного разогрева смеси. В данном случае используется теплота, которая выделяется смесью при пропускании через нее электрического тока. Для проведения электротока к бетону применяют электроды нескольких типов: пластинчатые, струнные, полосовые, стержневые. Наиболее эффективными являются пластинчатые электроды, изготавливаемые из кровельной стали. Пластины нашивают на поверхность опалубки, непосредственно соприкасающуюся с бетоном, и подключают к разноименным фазам сети. Между противолежащими электродами происходит токообмен, в результате чего осуществляется нагрев всей бетонной конструкции.
  • Сущность контактного или кондуктивного нагрева заключается в использовании тепла, выделяемого в проводнике во время прохождения по нему электротока. Контактным способом теплота передается всем поверхностям бетонного элемента. От поверхностей тепло распространяется по всей конструкции.

Для контактного нагрева бетона используют термоактивные гибкие покрытия или термоактивные опалубки.

  • Способ инфракрасного нагрева основан на способности инфракрасных лучей при их поглощении телом трансформироваться в тепловую энергию. Теплота от излучателя к нагреваемому телу осуществляется моментально без использования переносчика тепла. В качестве генераторов инфракрасных волн используют кварцевые и трубчатые металлические излучатели. Инфракрасный нагрев применяется для отогрева арматуры, промороженных бетонных поверхностей, тепловой защиты уложенной бетонной смеси.
  • При индукционном нагреве используется теплота, которая выделяется в стальной опалубке или арматурных деталях и изделиях, расположенных в электромагнитном поле катушки-индуктора. Этот метод применяется с целью отогрева ранее выполненных бетонных конструкций при любой температуре окружающей среды и в любой опалубке.

Чтобы ускорить процесс распалубки и дальнейшего нагружения конструкции в холодный период времени целесообразно использовать класс бетона на порядок выше, для быстрого набора нормируемой прочности.

Соблюдение рекомендаций по зимнему бетонированию позволит избежать утраты прочностных характеристик бетонных и железобетонных конструкций, выполненных при пониженных температурах наружного воздуха.

Бетонирование зимой: способы, особенности, необходимые мероприятия

При необходимости проведения зимнего бетонирования главной проблемой являются низкие температуры окружающей среды, которые приводят к замерзанию строительных материалов. Соответственно, технология бетонирования в зимних условиях направлена на предотвращение замерзания воды и других материалов.

Требования к зимнему бетонированию определяются СНиП 3.03.01, согласно которому зимними условиями считаются температуры ниже 5°С.

Особенности зимнего бетонирования

Существуют две важные причины, усложняющие процесс укладки бетона в зимой.

  • При низких температурах замедляется процесс гидратации цемента, что является причиной увеличения сроков набора твердости бетоном.

При температуре окружающей среды, равной 20 0 С, в течение недели бетон набирает около 70% проектной прочности. При понижении температуры до 5 0 С для набора такого уровня прочности потребуется времени в 3-4 раза больше.

  • Еще одним нежелательным процессом является развитие сил внутреннего давления, которые возникают из-за расширения замерзшей воды. Это явление приводит к разупрочнению бетона. Помимо этого, из замерзшей воды вокруг заполнителей образуются ледяные пленки, нарушающие связь между компонентами смеси.

При замерзании воды в порах твердеющей смеси развивается значительное давление, которое приводит к разрушению структуры неокрепшего бетона и снижению его прочностных характеристик.

Снижение прочности тем значительнее, чем в более раннем возрасте бетона замерзла вода. Наиболее опасным является период схватывания бетонной смеси. Если смесь замерзнет сразу после укладки ее в опалубку, то ее прочность при отрицательных температурах будет обусловлена только силами замерзания. При повышении температуры процесс гидратации цемента возобновится, но прочность такого бетона будет значительно уступать аналогичной характеристике материала, который не подвергался замораживанию.

Противостоять замораживанию без структурных разрушений может только тот бетон, который уже набрал определенное значение прочности. Важно соблюдать правило беспрерывной укладки бетона во избежание холодных швов.

В современном строительстве в мировой практике наиболее распространен способ зимнего бетонирования, когда бетонная смесь предохраняется от замерзания во время ее схватывания и набора определенной величины прочности, которая называется критической.

Под критической величиной прочности бетона принимают прочность, которая равна 50% от марочной. В конструкциях ответственного назначения бетон предохраняется от замерзания до достижения 70% от проектной прочности.

В современном строительстве применяют несколько способов бетонирования в зимний период:

  • использование добавок противоморозного действия;
  • укрытие бетонной смеси пленкой ПХВ и другими утеплителями;
  • электрический и инфракрасный прогрев бетона.

Основной закон прочности бетона, описанный здесь, позволяет грамотно спланировать строительные работы.

Самые популярные производители бетона, бетонных смесей и составляющих.

Применение добавок противоморозного действия

Технологически наиболее удобным и экономически выгодным методом проведения зимнего бетонирования является применение противоморозных добавок. Этот безобогревный способ гораздо дешевле бетонирования с предварительным ограждением и утеплением конструкции, прогрева электричеством и инфракрасными лучами.

Модификаторы противоморозного действия могут использоваться как самостоятельно, так и в сочетании с различными методами подогрева.

Все существующие «зимние» добавки в бетон можно разделить на три основные группы.

  • К первой группе относят добавки, которые либо слабо ускоряют, либо слабо замедляют процессы схватывания и твердения смеси. Представители этого класса — сильные и слабые электролиты, неэлектролиты и составы органического происхождения — карбамид и многоатомные спирты.
  • Ко второй группе принадлежат модификаторы на основе хлорида кальция. Эти вещества имеют способность сильно ускорять процессы схватывания и твердения и обладают значительными антифризными свойствами.
  • В третью группу входят вещества, обладающие слабыми антифризными свойствами, но являющиеся сильными ускорителями схватывания и твердения с сильным тепловыделением сразу после заливки. Сфера применения этих добавок невелика, но они представляют интерес с научной точки зрения. К таким добавкам относятся трехвалентные сульфаты на основе алюминия и железа.

Мероприятия, увеличивающие эффективность применения противоморозных добавок

Противоморозные добавки выполняют важную роль — активируют процессы твердения смеси и снижают температуру замерзания жидкой фазы. Но для получения эффективного результата, наряду с использованием модификаторов, необходимо выполнять ряд сопутствующих мероприятий.

  • Созданию внутренней теплоты в бетонной смеси способствует предварительный подогрев ее компонентов.
  • После окончания укладки поверхность бетона необходимо утеплить матами, что позволит сохранить тепло, выделенное в результате экзотермической реакции цемента и воды, и сохранить условия, подходящие для твердения.
  • Зимой наиболее эффективно использовать портландцементы и высокомарочные быстротвердеющие цементы.

При зимнем бетонировании не рекомендуется использовать замерзшие заполнители.

  • При изготовлении бетонной смеси из подогретых компонентов применяют иной порядок загрузки всех элементов, чем в традиционных летних условиях, когда все сухие составляющие одновременно загружаются в заполненный водой барабан смесителя. Зимой, чтобы избежать заваривания цемента, сначала в барабан заливают воду, затем засыпают крупный заполнитель, а потом проворачивают барабан несколько оборотов и засыпают песок и цемент.

Продолжительность перемешивания компонентов в зимнее время должна быть увеличена примерно в полтора раза.

  • Транспортировка смеси должна осуществляться в утепленной машине, с двойным днищем, куда поступают отработанные газы. Места погрузки и выгрузки бетонной смеси необходимо изолировать от воздействия ветра, а средства подачи смеси — тщательно утеплить.
  • Опалубка и арматура должны быть очищены от снега и наледи, арматуру необходимо отогреть до положительной температуры.
  • Обязательное условие зимнего бетонирования — быстрые темпы его проведения.

Сертификат качества на бетон, который можно скачать по этой ссылке, содержит результаты тестирования бетона и основных его характеристик.

Хотите заказать бетонные работы? Узнайте тут, сколько они стоят.

Метод «термоса»

Технологически метод «термоса» осуществляется укладкой смеси положительной температуры в утепленную опалубку. Бетон набирает прочность благодаря начальному теплосодержанию и экзотермическому выделению при реакции гидратации цемента.

Максимальное тепловыделение обеспечивают портландцементы и высокомарочные цементы. Особо эффективен метод «термоса» в сочетании с противоморозными добавками.

Бетонирование методом «горячего термоса» заключается в кратковременном подогреве смеси до 60-80 0 С, уплотнении ее в горячем состоянии и выдерживании в «термосе» или с применением дополнительного подогрева.

В условиях строительной площадки бетонную смесь разогревают с помощью электродов. Смесь выступает в цепи переменного электротока в роли сопротивления. Электропрогрев проводят в кузовах автосамосвалов или бадьях.

Способы искусственного нагрева и прогрева бетона

Сущность этого метода заключается в создании и дальнейшем поддержании температуры смеси при максимально допустимой величине, пока бетон не наберет требуемую прочность. Этот способ применяется в случаях, когда метода «термоса» оказывается недостаточно.

Существует несколько вариантов достижения требуемого результата:

  • Физический смысл электродного прогрева аналогичен выше описанному методу электродного разогрева смеси. В данном случае используется теплота, которая выделяется смесью при пропускании через нее электрического тока. Для подведения электротока к бетону применяют электроды нескольких типов: пластинчатые, струнные, полосовые, стержневые. Наиболее эффективными являются пластинчатые электроды, изготавливаемые из кровельной стали. Пластины нашивают на поверхность опалубки, непосредственно соприкасающуюся с бетоном, и подключают к разноименным фазам сети. Между противолежащими электродами происходит токообмен, в результате чего осуществляется нагрев всей бетонной конструкции.
  • Сущность контактного или кондуктивного нагрева заключается в использовании тепла, выделяемого в проводнике во время прохождения по нему электротока. Контактным способом теплота передается всем поверхностям бетонного элемента. От поверхностей тепло распространяется по всей конструкции.

Для контактного нагрева бетона используют термоактивные гибкие покрытия или термоактивные опалубки.

  • Способ инфракрасного нагрева основан на способности инфракрасных лучей при их поглощении телом трансформироваться в тепловую энергию. Теплота от излучателя к нагреваемому телу осуществляется моментально без использования переносчика тепла. В качестве генераторов инфракрасных волн используют кварцевые и трубчатые металлические излучатели. Инфракрасный нагрев применяется для отогрева арматуры, промороженных бетонных поверхностей, тепловой защиты уложенной бетонной смеси.
  • При индукционном нагреве используется теплота, которая выделяется в стальной опалубке или арматурных деталях и изделиях, расположенных в электромагнитном поле катушки-индуктора. Этот метод применяется с целью отогрева ранее выполненных бетонных конструкций при любой температуре окружающей среды и в любой опалубке.

Соблюдение рекомендаций по зимнему бетонированию позволит избежать утраты прочностных характеристик бетонных и железобетонных конструкций, выполненных при пониженных температурах наружного воздуха.

Методы зимнего бетонирования (зимний бетон): способы прогрева конструкций, добавки пмд

Основной проблемой осуществления зимнего бетонирования считается низкая температура воздуха, при которой замерзают используемые строительные материалы. Поэтому необходима эффективная технология предотвращения этого процесса.

Требования к процессу бетонирования определены строительными нормами и правилами, по которым температура менее 5С относится к зимнему периоду.

Особенности зимнего бетонировани

Осуществляемая укладка бетонного раствора зимой усложняется из-за следующих причин:

  1. При низкой температуре начинается замедление гидратации цемента, поэтому период набора прочности бетона возрастает.
  2. Рост давления в бетоне начинается из-за замерзшей расширяющейся воды, что в результате вызывает его разупрочнение.

Образующиеся ледяные корки нарушают связанные между собой компоненты раствора. Уменьшение прочности зависит от точного возраста бетона и произошедшего замерзания воды. Самым опасным считается период схватывания свежей залитой смеси, ведь прочность появляется из-за ее замерзания. При возрастании температуры цементная гидратация начинается снова. При этом по прочности бетон серьезно уступает не замороженному раствору.

Устоять перед разрушением структуры может качественный зимний бетон, набравший определенный уровень прочности. Очень важно соблюдение беспрерывной укладки готовой смеси, что не позволяет появиться холодным швам.

В Москве в строительстве самым популярным методом бетонирования стала защита бетона от вероятного замерзания при происходящем схватывании, а также наборе критической прочности, составляющей 50% от усиленной марочной. В более серьезных конструкциях обустраиваемый бетон защищается от замерзания почти до 70% от величины проектной прочности.

  • введение в состав разработанных противоморозных добавок или химических веществ;
  • тщательное укрытие смеси утеплителями;
  • разные виды прогрева поверхности бетона.

Применение добавок противоморозного действия

Сегодня самым удобным способом защиты бетонирования зимой стало применение разработанных противоморозных добавок. Способ считается более дешевым по сравнению с бетонированием, требующим тщательного утепления конструкции, включая прогрев электричеством или используемыми инфракрасными лучами. Такие специальные добавки применяются самостоятельно или сочетаются с остальными методами подогрева.

  1. Добавки для ускорения или замедления схватывания смеси. Например, это электролиты, не электролиты и карбамид, а также многоатомные спирты.
  2. Модификаторы, созданные из хлорида кальция и существенно ускоряющие время схватывания бетона.
  3. Вещества с антифризными свойствами, которые ускоряют схватывание раствора с усиленным тепловыделением после выполнения заливки. Это трехвалентные сульфаты, созданные из алюминия и добавленного железа.

Многих строителей интересует вопрос о том, можно ли добавлять соль в бетон зимой. Техническая соль не разъедает цемент и считается самой доступной и недорогой противоморозной добавкой, которая обеспечивает непрерывность бетонных работ при низкой температуре воздуха.

Мероприятия увеличивающие эффективность применения противоморозных добавок пмд

Разработанные противоморозные добавки необходимы для ускорения схватывания и твердения бетона. Причем для нормального результата проводится ряд следующих важных мероприятий:

  1. Создание участков теплоты внутри бетонного раствора с проведением подогрева его основных компонентов.
  2. Утепление поверхности бетона для необходимого сохранения тепла, образующегося при изотермической реакции цемента с добавленной водой.
  3. Использование высокомарочных твердеющих цементов.
  4. Изготовление смеси из предварительно подогретых компонентов требует иного порядка процесса их загрузки в отличие от летних условий и одновременной загрузки материалов в барабан смесителя. Например, зимой в барабан необходимо заливать горячую воду, затем добавляется выбранный заполнитель, вводятся цементная смесь и песок.
  5. Смесь транспортируется в утепленной специальной машине, имеющей двойное днище. Пункт проведения погрузочно-разгрузочных работ защищается от ветра. Заливать бетон необходимо с помощью устройств, которые обязательно утепляются.
  6. С опалубки счищаются снег и образующаяся наледь, арматура тоже должна быть обязательно очищена.
  7. Зимнее бетонирование проводится в быстром темпе.
Читайте также:  Красим двери

Замерзание воды

Серьезным фактором при укладке бетонного раствора является срок замерзания воды, ведь от этого зависит прочность конструкции. Поэтому бетон получится хрупким при замерзании именно в своем раннем возрасте. Причем период схватывания раствора считается самым критичным.

Используемая технология бетонирования в зимних условиях свидетельствует о том факте, что при замерзании бетона практически сразу после размещения в опалубке на величину его прочности повлияет сила мороза. При росте температуры воздуха начнется продолжение гидратации. Но конструкция по свой прочности уступит похожему строению, смесь которого не замерзала при укладке. Но если бетон смог набрать прочность до замерзания, в дальнейшем он может замораживаться без изменений своей структуры и появления дефектов. Предотвращение появления xoлoдныx швoв возможно с помощью непрерывного укладывания смеси.

Метод «термоса»

Технология метода «термоса» состоит в укладке нормальной по температуре смеси в хорошо утепленную опалубку. Бетон становится прочным из-за выделения тепла при происходящей реакции цементной гидратации. Большое количество образующегося тепла выделяется при работе с высокомарочными цементами.

Бетонирование зимой с помощью «горячего термоса» состоит в подогреве раствора до температуры 60-80 °С. На месте строительства бетонная смесь постепенно разогревается специальными электродами. При этом она является сопротивлением в действующей цепи переменного тока. Электропрогрев осуществляется в специальных бадьях.

Способы искусственного нагрева и прогрева бетона

Для нормальной прочности бетона требуется поддержание высокой температуры подготовленной смеси. Такой способ используется при недостаточности метода «термоса».

  1. Электродный прогрев бетона, приводящий к токообмену и эффективному нагреву конструкции.
  2. Контактный нагрев с применением проводника.
  3. Инфракрасный нагрев с помощью излучателей.
  4. Индукционный нагрев с применением специальной катушки-индуктора.

Прогрев и нагрев бетона с помощью электричества и инфракрасного излучения

Суть такого метода заключается в нагревании бетона и сохранении тепла до набора необходимой самой высокой прочности конструкции. Чаще всего нагревание осуществляется электрическим током, причем бетон становится сопротивлением в электроцепи. Цель достигается при его постепенном нагревании.

Самым подходящим вариантом стали пластинчатые электроды, изготовленные из высококачественного кровельного железа. Они нашиваются на часть опалубки, контактирующую с бетоном. Затем выполняется подключение электродов к электросети. Между ними появляется разность потенциалов, а через бетонную конструкцию течет ток, приводящий к нагреву. В результате цена объекта после прогревания конструкции возрастает из-за особенности такой работы зимой. Понесенные затраты являются полностью оправданными, ведь из-за них предотвращается появление хрупкости бетона, приводящее к разрушению конструкции.

Марки бетона по водонепроницаемости свидетельствуют о степени устойчивости бетона к воздействию влаги. Причем высокий коэффициент свидетельствует о лучшей устойчивости.

Meтoд инфpaкpacнoгo нaгpeвa

При необходимости используется метод специального инфракрасного нагрева. Он основан на трансформации инфракрасных лучей в необходимую тепловую энергию.

Для создания инфракрасных волн необходимы кварцевые и трубчатые виды специальных излучателей, изготовленные из металла. В основном такой способ используется для отогревания промерзших бетонных конструкций и для эффективной тепловой защиты размещенной в опалубке смеси.

Индукционный метод выполняется с помощью катушки, генерирующей выделение тепла в рабочих металлических деталях в зоне своего действия. Такой метод используется для отогревания готовых конструкций и может быть применен для бурения отверстий в прочном бетоне независимо от температуры.

Обогрев конструкций

Для этого используется гибкий длинный шланг или специальный прорезиненный рукав. Выработка воздуха осуществляется теплогенератором, запитанным от электросети или функционирующим на дизельном топливе. Но все же рекомендуется использование электрических устройств, ведь при работе дизеля происходит выделение большого объема выхлопных газов.

Эффективный воздушный обогрев применяется после заливки бетона для фундаментов в установленную опалубку в помещении с воздушной циркуляцией, которую усиливает вентилятор для более равномерного распределения прогрева. При этом рекомендовано применение материалов из плотного брезента для создания необходимого тепляка над прогреваемой бетонной конструкцией.

Бетонирование в зимнее время при зимних отрицательных температурах не является сложным делом, ведь при соблюдении положенных правил характеристики прочности созданной конструкции сохраняются на достаточно высоком уровне.

Бетонирование в зимних условиях: способ «термоса», прогрев с помощью электричества и инфракрасного излучения

Если необходимо провести бетонирование в условиях зимы, то главной проблемой становятся низкие температуры, из-за которых происходит замерзание строительных материалов. По СНиПу 3.03.1 зимними условиями бетонирования являются температуры ниже 5 градусов Цельсия.

На фото- работы с бетоном в условиях зимы

Особенности работ в зимний период

Все технологии, применяемые при бетонировании в условиях низких температур, призваны предотвратить это замерзание.Можно указать 2 главные особенности, которые делают процесс укладки бетона, при низких температурах, довольно сложным.

  • Замерзание воды в бетонных порах. Замёрзшая вода расширяется, что приводит к увеличению внутреннего давления. Это делает бетон менее прочным. Помимо всего этого, вокруг заполнителей могут формироваться ледяные плёнки, что в свою очередь приводит к нарушению связи между компонентами смеси.
  • Гидратация цемента замедляется при низких температурах, а это значит, что сроки по набору твёрдости бетоном сильно увеличиваются.

Важно!
Бетон набирает в районе 70% проектной прочности за неделю при температуре окружающей среды в 20 градусов.
В зимних условиях, этот срок может составить 3-4 недели.

Замерзание воды

Следует более подробно остановиться на таком важном факторе, как замерзание воды. Большое значение для прочности всей конструкции имеет срок, когда замёрзла вода. Существует прямая зависимость: чем в более раннем возрасте бетона произошло замерзание, тем более хрупким будет бетон.

Укладка раствора при минусовой температуре

Период, когда бетонная смесь схватывается, является самым критичным и определяющим. Технология бетонирования в зимних условиях гласит, что если бетонная смесь замёрзнет сразу после укладки в опалубку, то её дальнейшая прочность будет зависеть только от силы мороза.

При повышении температуры, процесс гидратации, безусловно, продолжится. Но прочность такой конструкции будет в значительной мере уступать аналогичному строению, чья смесь не подвергалась заморозке в период укладки.

Если бетон успел набрать некоторое значение прочности до момента заморозки, то тогда он вполне может перенести дальнейшее замораживание без структурных изменений и внутренних дефектов. Также необходимо попытаться избежать, так называемых, холодных швов. Для этого бетон необходимо класть непрерывно.

Величина прочности

При работе в условиях низких температур важно помнить про критическую величину прочности бетона. Эта величина равна 50% от заявленной марочной прочности. Об этом показателе важно помнить, потому что при современном зимнем бетонировании, смесь предохраняют от замерзания вплоть до момента набора ею этой самой величины в 50%.

Бетон набирается прочность практически под снегом

Если речь идёт об объекте особой важности, то предохранение от замерзания осуществляют вплоть до набора смесью отметки в 70%.

Способы зимнего бетонирования

На данный момент существует 3 основных способа укладки бетона в условиях пониженных температур. Применение добавок анти морозного действия. Это наиболее дешёвый и технологически обоснованный метод по защите смеси от морозов. Все добавки подобного рода делятся на 3 основные группы, в зависимости от способа своего действия.

Первая группа добавокДобавки, которые способны несильно ускорить или замедлить (в зависимости от поставленной задачи) процесс твердения. Сюда можно отнести некоторые электролиты, и некоторые органические соединения, такие как, например, многоатомные спирты.
Вторая группа добавокДобавки, которые, в отличие от предыдущих, сильно ускоряют процесс твердения и обладают сильными противоморозными свойствами. Такие добавки делают на основе хлорида кальция.
Третья группа добавокВещества, не обладающие сильными противоморозными действиями, но способствующие быстрому схватыванию смеси, с последующим мощным выделением тепла сразу после заливки.

Заливка фундамента и в малоэтажном строительстве возможна в зимнее время

Особенности бетонирования в зимних условиях таковы, что зачастую, невозможно обойтись только противоморозными добавками. Необходимо предпринять ряд мер, которые усилят действие, применённых химических веществ, и ускорят сроки затвердевания.

Такими дополнительными мерами являются:

  • Предварительная очистка опалубки и арматуры от снега и льда. Железная арматура должна быть отогрета до положительных температур.
  • Все работы должны производиться в максимально возможном темпе.
  • Непосредственная транспортировка смеси должна проводиться в машине, оборудованной двойным днищем, куда с целью подогрева должны поступать отработанные газы.
  • Во время разгрузки, необходимо защитить строительную площадку от порывов ветра, а сами средства разгрузки должны быть максимально утеплёнными.
  • После того как укладка завершена, необходимо укрыть смесь матами для сохранения тепла на как можно более долгий срок.
  • В идеале, должен быть осуществлён предварительный подогрев всех компонентов смеси.

Важно!
При предварительно подогреве компонентов, необходимо применить особый порядок загрузки в смеситель, чтобы избежать «заваривания смеси».
При низких температурах, в смеситель сначала заливают воду, потом подаётся крупный заполнитель, прокручивают барабан несколько раз, и только потом засыпается песок и цемент.
Эта инструкция должна быть строго соблюдена.

Особенности зимнего устройства монолита

Способ «термоса»

Данный метод заключается в том, чтобы смесь, имеющую положительную температуру, укладывать в утеплённую опалубку. Так же существует, похожий на него, способ «горячего термоса», при применении которого, смесь предварительно нагревается на короткий промежуток времени до отметок 60-80 градусов.

Затем происходит её уплотнение в таком нагретом состоянии. Рекомендуется дополнительный подогрев. Разогревают смесь чаще всего при помощи электродов.

Важно!
Рекомендуется применять этот метод в сочетании с химическими добавками.
Это позволит в более короткие сроки добиться желаемого эффекта.

Прогрев в зимних условиях монолита

Прогрев и нагрев бетона с помощью электричества и инфракрасного излучения

Применяется когда «метод термоса» недостаточен. Его суть заключается в прогревании бетона и поддержании тепла до тех пор, пока он не наберёт необходимый запас прочности, причем такой, что может потом потребоваться резка железобетона алмазными кругами.

Чаще всего раствор нагревают с помощью электрического тока. Бетон становится частью электрической цепи и оказывает сопротивление. В результате он нагревается, и цель оказывается достигнутой.

Электрический прогрев фундамента

Для электрического нагрева бетона используют электроды, которые бывают нескольких типов:

  • Струнные электроды
  • Пластинчатые.
  • Стержневые.
  • Полосовые.

С наилучшей стороны себя зарекомендовали пластинчатые электроды, которые изготавливаются из кровельного железа. Технология выглядит следующим образом: электроды нашивают на ту поверхность опалубки, которая будет контактировать с бетоном. Затем электроды подключают к электрической сети.

Между электродами возникает разность потенциалов, через бетон начинает течь ток, который и приводит к его нагреву. Итоговая цена объекта, на котором были применены методы прогрева, конечно возрастёт. Но такова особенность строительных работ зимой.

И эти затраты полностью оправданы, так как позволяют не допустить последующего разрушения конструкции из-за хрупкости бетона.

Метод инфракрасного нагрева

Иногда применяется метод инфракрасного нагрева, который основывается на способности инфракрасных лучей при проникновении в какой-либо предмет, или субстанцию, трансформироваться в тепловую энергию.

Прогрев инфракрасным излучением

Для того чтобы сгенерировать инфракрасные волны, применяются кварцевые или металлические трубчатые излучатели. К этому способу прибегают, в основном, когда надо отогреть промёрзшие бетонные конструкции, отогреть арматуру, осуществить тепловую защиту уже уложенной бетонной смеси.

Также может быть использован метод индукционного нагрева. В этом случае используется эффект индукционной катушки, которая генерирует выделение теплоты в металлических деталях (такие как стальная опалубка, арматура и прочих железные предметы) в поле своего действия.

К этому методу прибегают, когда надо отогреть уже готовые бетонные конструкции и, к примеру, провести алмазное бурение отверстий в бетоне.Отогрев данным методом может быть эффективен при любых температурах окружающей среды.

Все без исключения работы с бетоном в зимний период сопряжены с трудностями. Но благодаря современным технологиям, можно максимально сократить сроки строительства без ущерба качеству возводимого объекта.


Немаловажно и то, что даже в таких непростых условиях, некоторые виды работ можно выполнить своими руками. Это, например, касается приготовления раствора с применением противоморозных добавок для бетона.

Собственноручно можно прогревать заливку бетонного раствора

Вывод

Не стоит бояться работы с бетоном даже в минусовые температуры. Ведь при соблюдении всех правил, удастся сохранить прочностные характеристики материалов на высоком уровне, а видео в этой статье поможет разобраться во многих нюансах

Ссылка на основную публикацию