Прочность бетона

Всё про бетон

Прочность бетона

Прочность бетона

Прочность бетона

Основное требование, предъявляемое к бетону, – получение им в определенный срок заданной по расчету прочности на сжатие. В зависимости от прочности на сжатие бетон разделяется на ряд марок. Марка бетона назначается в проекте сооружения. Например, указание на чертеже «марка бетона 200» означает, что прочность бетона при сжатии через 28 дней после затворения составляет 200 кгс/см².

Строительными нормами и правилами предусматриваются следующие марки бетонов: тяжелых – 50, 75, 100, 150, 200, 300, 400, 500 и 600; легких – 35, 50, 75, 100, 150, 200, 250, 300, 350 и 400. Тяжелые бетоны марок 50 и 75 применяются только для неармированных конструкций. Конструкции с предварительно напрягаемой арматурой выполняются из тяжелого бетона марки не ниже 200 или легкого – не ниже 150.

Прочность (марка) бетона зависит прежде всего от качества составляющих материалов и состава бетона. Строительная лаборатория подбирает из предназначенных для бетона материалов такой состав, при котором прочность его была бы не ниже заданной марки. Правильность подбора состава бетона проверяется в лаборатории раздавливанием на специальных прессах стандартных образцов (кубиков), изготовленных из бетона принятого состава и выдержанных определенное время после затворения (например, 7 или 28 дней).

Прочность бетона зависит от условий перемешивания, транспортирования и укладки бетонной смеси и от условий твердения бетона. Тщательное соблюдение правил производства бетонных работ и высокая квалификация бетонщиков – непременные условия для получения высококачественного, прочного бетона.

Факторы, от которых зависит прочность бетона

1. Прежде всего прочность бетона зависит от качества цемента . Чем выше прочность (активность) цемента, тем выше будет и прочность бетона. Чем скорее твердеет цемент, тем быстрее будет нарастать прочность бетона.

2. Количество цемента , расходуемого на 1 м³ бетона. Наилучшие результаты по прочности даёт бетон с таким расходом цемента, при котором густое цементное тесто (смесь цемента с небольшим количеством воды) заполняет все пустоты в песке и обволакивает тонким слоем частицы песка, а цементно-песчаный раствор заполняет все пустоты в крупном заполнителе.

При одном и том же количестве цемента прочность бетона будет тем меньше, чем больше воды содержится в бетоне. Это объясняется следующим: для твердения бетона необходимо количество воды, равное примерно 20% веса цемента (например при расходе цемента 220 – 250 кг на 1 м³ бетона требуется 45 – 50 л воды); при таком количестве воды бетонная смесь получается слишком сухой, ее нельзя достаточно равномерно перемещать и плотно уложить, поэтому практически в бетонную смесь приходится добавлять в 3 – 4 раза больше воды (около 160 – 180 л на 1 м³).

Излишняя вода по мере твердения испаряется, оставляя поры (пустоты). Чем больше воды было добавлено в бетонную смесь при ее приготовлении, тем больше пор образуется в затвердевшем бетоне и тем меньше из-за этого будет его прочность.

3. Качество заполнителей – их чистота, форма и зерновой состав (количество зерен различной крупности и максимальная крупность зерен) – оказывает значительное влияние на прочность бетона. Неправильная форма и шероховатая поверхность зёрен заполнителей бетона обеспечивается лучшее сцепление цементного теста с заполнителями бетона и большая прочность; при округленной форме и сглаженной поверхности – меньшая прочность. Загрязненность заполнителей, ухудшающая сцепление их с цементным тестом, снижает прочность бетона.

4. Качество перемешивания , зависящее от способа и продолжительности перемешивания. Недостаточное перемешивание значительно снижает прочность бетона.

5. Очень важны порядок укладки бетонной смеси в конструкцию (непрерывно или с перерывами) и способ обработки поверхности стыка бетона, укладываемого после перерыва, с уложенным до перерыва. При несоблюдении правил обработки стыка (очистка, насечка, промывка) прочность стыка может сильно снизиться.

6. Бетон, уложенный и уплотненный вибраторами , имеет на 10 – 30% большую прочность, чем бетон, уплотненный вручную.

7. Прочность бетона растет вместе с его возрастом . Особенно быстро растет прочность в начальном возрасте (до 28 дней) и продолжает нарастать медленнее в течение ряда лет.

8. Наибольшую прочность бетон получает при твердении в сырой или влажной среде . Наоборот, твердение в сухом и жарком воздухе может привести к получению низкокачественного бетона. Пониженная температура замедляет нарастание прочности, а при температурах ниже нуля твердение бетона прекращается.

9. Замерзание бетона приостанавливает процесс твердения, но по оттаивании бетон продолжает твердеть. Бетон не теряет прочности, если он замерз после достижения им «критической прочности»; раннее замерзание ведет к понижению конечной прочности бетона. Нужно исключить попеременные замерзание и оттаивание свежего бетона , в результате которых он, в некоторых случаях, может потерять способность к твердению.

Вы смотрели: Прочность бетона

Поделиться ссылкой в социальных сетях

Прочность бетона

Прочность бетона

Содержание:

Прочность бетона – это техническая характеристика, определяющая его способность противостоять механическому и химическому воздействию.

Для чего нужно знать прочность бетона?

Практически при любом строительстве, будь то жилые здания, или хозяйственные постройки, используется бетон. В зависимости от вида и этапа строительства, требования, предъявляемые к строительным материалам, могут существенно изменяться. Так, например, для заливки фундаментов и возведения стен используются различные марки бетона. Марка бетона в свою очередь определяется его прочностью.
Прочность бетона – это наиболее важная характеристика, определяющая свойства и эксплуатационные качества бетонных конструкций и элементов строительных сооружений.

Знание показателей прочности бетона позволит избежать многих нежелательных последствий для строительных сооружений. Например, использование бетона, имеющего недостаточный уровень прочности, может привести к снижению эксплуатационных качеств постройки, появлению трещин, преждевременному разрушению и досрочному выходу здания из строя.
Определение прочности бетона является также обязательной процедурой для застройщиков перед сдачей здания в эксплуатацию.

Как определяется прочность бетона?

Прочность бетона определяется в лабораторных условиях при помощи специальных приборов на отобранных пробах и контрольных образцах. Все испытания регламентируются строительными ГОСТами, принятыми для определенного вида бетона.
Прочность бетона также можно определить непосредственно в процессе строительства на строительной площадке. Подобные испытания проводятся для контроля качества возведенных элементов сооружения.

Существует несколько методов определения прочности бетона. В зависимости от характера воздействия различают следующие способы:

Разрушающие методы предполагают разрушение образца, изготовленного из контрольной пробы бетонной смеси, а также взятого из бетонной поверхности при помощи алмазного бура.

При этом методе исследования происходит раздавливание кубиков или выпиленных цилиндров бетона под испытательным прессом. Нагрузка увеличивается непрерывно и равномерно до момента разрушения контрольного образца. Полученная в результате цифра критической нагрузки фиксируется и по ней происходит дальнейший расчет прочности бетона.

Разрушающий метод считается наиболее точным для определения прочности бетона. Обследование здания методом раздавливания бетонных проб, определяет прочность бетона на сжатие. Согласно действующим в настоящее время СНиПам, он является обязательным перед сдачей здания в эксплуатацию.

Неразрушающие методы не требуют получения образцов и их последующего разрушения. Испытания проводятся при помощи различных приборов и инструментов.

В зависимости от используемых приспособлений различают следующие неразрушающие методы исследований:

  • частичного разрушения;
  • ударного воздействия;
  • ультразвукового обследования.

Метод частичного разрушения основан на местном воздействии на бетонную поверхность и приводит к незначительному ее повреждению.

Различают следующие методы частичного разрушения:

  • на отрыв;
  • скалыванием;
  • отрыв со скалыванием.

Метод отрыва состоит в закреплении на участке бетонной поверхности металлического диска при помощи специального клея и последующего его отрыва. Усилие, необходимое для разрушения бетона при подобном методе фиксируется и используется в дальнейших вычислениях прочности.
Метод скалывания заключается в механическом воздействии скользящего характера на ребро конструкции и регистрации усилия, при котором происходит откалывание его участка.

Метод отрыва со скалыванием характеризуется большей точностью, по сравнению с остальными методами частичного разрушения. Суть его состоит в закреплении на участке бетонной конструкции анкерных устройств и последующего их отрыва от поверхности.
Методы ударного воздействия основаны на применении к бетонной поверхности силового воздействия ударного типа.

Различают 3 метода определения прочности ударом:

  • метод ударного импульса;
  • упругого отскока;
  • пластической деформации.

Метод ударного импульса достаточно прост в использовании и состоит в регистрации силы удара и возникающей при этом энергии.

Метод упругого отскока не менее прост и заключается в определении величины отскока бойка ударника от бетонной поверхности.

Метод пластической деформации состоит в силовом воздействии на исследуемую область приборов с закрепленными на их ударной поверхности штампов шарикового или дискового типа. По глубине полученных в результате удара или давления отпечатков определяется прочность бетона.

Метод ультразвукового обследования подразумевает использование прибора, испускающего ультразвуковые волны. При этом определяется скорость ультразвука, проходящего сквозь бетонную конструкцию. Преимущество подобного метода – в возможности исследования не только поверхности бетона, но и его глубинных слоев. Недостаток – в большом проценте погрешности при расчетах.

От чего зависит прочность бетона?

В результате химических процессов, происходящих при взаимодействии бетонной смеси с водой прочность бетона в процессе его застывания увеличивается. Под влиянием различных факторов скорость химических реакций может замедляться и ускоряться. От этого же будет зависеть показатель прочности бетона.

Выделяют следующие основные факторы, влияющие на прочность бетона:

  • активность цемента;
  • процентное содержание цемента;
  • соотношение цемента и воды в растворе;
  • технические характеристики и качество наполнителей;
  • качество смешивания составляющих бетонной смеси;
  • степень уплотнения;
  • время, затраченное на застывание раствора;
  • внешние условия (температура воздуха и влажность среды);
  • применение повторного вибрирования.

Наиболее важным фактором, определяющим прочность бетона, является активность цемента. Выяснена и определена прямая зависимость между активностью цемента и прочностью бетона. Чем выше активность, тем более прочными получаются бетонные изделия и наоборот, чем она ниже, тем меньше прочность и качество бетона.

Процентное содержание цемента не менее важная величина, определяющая показатели прочности. Увеличение количества цемента в смеси ведет к повышению прочности бетонных конструкций. Уменьшение – к ее снижению. При этом существует следующая закономерность: увеличение прочности происходит лишь до определенного момента. В дальнейшем показатели прочности бетона возрастают незначительно, а вот его нежелательные качества – усадка и ползучесть, увеличиваются.

Соотношение цемента и воды влияет на прочность вследствие физических особенностей застывающей бетонной смеси. Одной из них является способность бетона связывать лишь 15-25% входящей в его состав воды. В бетонном же растворе, как правило, присутствует от 40 до 70% воды, необходимой для облегчения укладывания бетона в форму. Излишек воды приводит к образованию пор в толще бетона, что ведет к снижению его прочности. Отсюда вытекает следующая закономерность: при возрастании величины водоцементного соотношения В/Ц, прочность бетона уменьшается, а при ее уменьшении – увеличивается.

Качество и свойства наполнителей также играют немалую роль в формировании прочности бетона. Наличие органических и глинистых веществ, использование мелкофракционных наполнителей, приводит к снижению прочности. Крупные фракции имеют лучшее сцепление с цементным связующим, и их использование увеличивает прочность бетона.

Качество смешивания и применение вибрирования влияет на степень уплотнения бетонного раствора. От плотности бетона зависит его прочность. Чем плотнее улеглись частицы бетонного состава, тем выше будет прочность бетона.

Внешние условия и время отвердевания бетона – еще один из факторов, определяющих показатели его прочности. Наиболее благоприятной считается температура от 15 до 20С0. Влажность воздуха при этом должна составлять от 90 до 100%. При таких параметрах среды происходит быстрое возрастание прочности бетона и увеличивается время его отвердевания. С течением времени, показатель прочности увеличивается. Его рост прекращается лишь после полного высыхания бетона или его замерзания.

Читайте также:  Асфальтная крошка

Прочность бетона через 7 суток и 28 дней

Давно выяснена и рассчитана закономерность, при которой происходит возрастание прочности бетона в зависимости от времени его застывания. В соответствии с ней наибольший показатель предела прочности – 100%, бетон набирает на 28-е сутки застывания. На 7-е сутки бетон показывает 60-80% своей потенциальной прочности. На 3-и сутки соответственно 30%. По ГОСТу, именно в эти дни рекомендовано производить испытания бетонных кубиков.

Изменение прочности бетона с течением времени происходит по следующей логарифмической зависимости:
Rb(n) = Rb(28) lgn / lg28, где Rb – прочность бетона, n-количество дней, а lg-десятичный логарифм возраста бетона.
Расчет прочности по формуле дает лишь приблизительные показатели прочности. Важно учесть также, что подобным образом можно определить прочность бетона начиная с 3-х дневного возраста.

Прочность бетона по маркам

Марка бетона указывает предел его прочности на сжатие и выражается в кгс/см2 (килограмм-силы на см2). Обозначается она буквой М, а цифра после буквы указывает среднее, приблизительное значение прочности.
В строительстве чаще всего используются бетоны следующих марок: М100, М150, М200, М250, М300, М350, М400, М450, М500.

Показатели прочности бетона по маркам:

  • М100 — показатель прочности равен 98,23 кгс/см2
  • М150 – от 130,97 до 163,71 кгс/см2
  • М200 – 196,45 кгс/см2
  • М250 – 261,93 кгс/см2
  • М300 – от 294,68 до 327,42 кгс/см2
  • М350 – от 327,42 до 360,18 кгс/см2
  • М400 – 392,9 кгс/см2
  • М450 – 458,39 кгс/см2
  • М500 – 523,87 кгс/см2

Марка бетона и его прочность зависит от количества цемента, входящего в его состав. Чем больше содержание цемента, тем выше будет марка и наоборот, чем ниже марка, тем меньше цемента содержит бетонная смесь.

Применение бетона в зависимости от его прочности

Наиболее важной характеристикой бетона является его прочность на сжатие, определяемая маркой бетонной смеси. Для каждого вида строительных работ используются свои марки бетона.

Бетон марки М100 – разновидность легких бетонов. Применяется на начальных этапах строительства, для подготовки основания под фундамент, заливкой монолитных стен, перед арматурными работами, а также в дорожном строительстве при устройстве бордюров.

М150 – имеет несколько более высокую прочность, поэтому помимо подготовительных работ, может использоваться для стяжки пола, устройства пешеходных дорог. Возможно его применение в качестве фундамента при строительстве малоэтажных построек. Так же, как и марка М100, является одним из видов легких бетонов.

М200 – наиболее часто используемая в строительстве марка. Обладает достаточно высоким показателем прочности и применяется практически на всех этапах строительных работ. Бетоном, имеющим такую марку, заливают фундаменты, площадки, пешеходные дорожки. Используют его и для устройства лестниц и лестничных пролетов, а также возведения несущих стен. При строительстве дорог, бетоном марки М200 формируют подушку под бордюр.

М250 – охватывает сферу применения предыдущей марки. Однако вследствие более высокой прочности может также применятся в производстве плит для перекрытий при возведении малоэтажных зданий.

М300 – не менее популярная марка в строительстве, чем бетон марки М200. Из него изготавливаются блоки несущих стен, плиты перекрытий, лестницы, заборы. М300 используется для заливки монолитных фундаментов, площадок и в других подобных работах.

М350 – имеет достаточно высокую прочность. Область применения – изготовление фундаментных плит при возведении многоэтажных зданий, плит перекрытий и опорных балок. Используют марку М350 в монолитном строительстве, при изготовлении аэродромных плит, опорных колонн, бассейнов и подобных изделий.

М400 – сфера применения — изготовление ЖБИ, строительство гидротехнических сооружений и зданий, несущих повышенную, по сравнению с жилыми постройками, нагрузку. Это могут быть многоэтажные торгово-развлекательные комплексы, аквапарки и так далее.

М450 – применяется при возведении плотин, строительстве дамб и метро.

М500 – основная сфера применения – гидротехнические сооружения и железобетонные конструкции.

Свойства бетонов, влияющие на их эксплуатационные характеристики

Среди основных свойств бетонов, влияющих на длительность срока их эксплуатации без изменения структуры, можно выделить два основных:

  • Прочность бетона на сжатие: проектная (марочная).
  • Стойкость: к замораживанию/оттаиванию, к воздействию высоких температур, к воздействию влаги.

Различие видов бетонов и их свойств позволяет подобрать материал с необходимыми механическими параметрами и стойкостью к физико-химическим воздействиям. Классификация на марки и классы бетона дает представление обо всех необходимых характеристиках, таких прочность, степень морозоустойчивости, водонепроницаемости, жаро- и термостойкости.

Марочная прочность бетона и классы прочности

Прочность бетона – это показатель предела сопротивляемости материала к внешнему механическому воздействию на сжатие (измеряется в кгс/см²). То есть, можно сказать, что этот параметр дает представление о механических свойствах бетона, его устойчивости к нагрузкам. Именно эта характеристика и положена в основу классификации бетона. Бетон марки М15 обладает наименьшей прочностью, а М800, соответственно, наибольшей.

Такая маркировка позволяет максимально точно учесть прочностные свойства бетона, и подобрать его в соответствии с предполагаемыми нагрузками.

Так, для предварительно-напряженных конструкций необходим раствор с маркировкой не ниже М300, а для обычных железобетонных панелей или блоков, не испытывающих большой нагрузки — М200-М250. Марки М100-М150 используются при заливке монолитных фундаментов. Бетонный раствор М15—М50 применяется при изготовлении ограждающих и теплоизоляционных конструкций.

Существует и другая классификация – по классам прочности на сжатие бетона: от В1 до В22. Эти две системы классификации учитывают один параметр – прочность на сжатие. Отличие класса от марки бетона в том, что для марок (М) берется усредненное значение по прочности на сжатие, а для классов (В) – гарантированное. Средняя прочность бетона на сжатие – это средний показатель прочности проверяемых образцов, а гарантированное означает, что бетон имеет прочность не менее заявленной. При разработке проектной документации в спецификации указывается класс (В), хотя, в силу привычки, более распространенной является классификация по маркам. Ниже приведено примерное соотношение класса и марки бетона.

Таблица марок и классов бетона и их соотношения:

Набор прочности и критическая прочность бетона

Критическая прочность – параметр крайне важный при заливке бетонного раствора в условиях низких температур. Дело в том, что проектная прочность бетона появляется только на 28 день вызревания, при условии соблюдения технологии твердения, а соответственно и температурного режима (не ниже + 30°С). При более низкой температуре срок твердения бетона увеличивается, а при отрицательной прекращается.

При температуре ниже 0°С останавливается набор прочности бетона, в силу прекращения гидратации – связывания молекул воды и клинкерных составляющих цемента, образующих цементный камень. Если температура опускается ниже — 3°С начинаются фазовые превращения воды, что приводит к разрушениям структуры невызревшего бетона и потери прочности. Как показали проведенные опыты, образцы, набравшие критическую прочность, то есть вызревшие до определенного состояния, после замерзания и оттаивания не подвергаются разрушению и в дальнейшем продолжают набирать прочность, а образцы, замороженные на раннем сроке твердения, характеризуются потерей прочности до 50%.

Для растворов разных марок необходимо и различное время для вызревания до критической прочности бетона. На этой странице можно посмотреть таблицу, где указано, какую прочность от проектной должен набрать бетон до замораживания. Однако можно сказать, что недопустимо замораживание в первой фазе – фазе схватывания (первые сутки) и в первые 5-7 дней твердения бетона при нормальном температурном режиме. За первую неделю бетон набирает до 60-70% марочной прочности, после чего замораживание бетона только приостановит процесс вызревания и после оттаивания он возобновится.

Таблица критической прочности для различных марок:

Повышение температуры ускоряет процесс созревания бетона, но необходимо помнить о том, что нагрев свыше 90°С недопустим. При температуре твердения бетона 75-85°С в атмосфере насыщенного пара твердение до 60-70% марочной прочности происходит в течение 12 часов. Прогрев до такой температуры без насыщения паром приводит к высыханию, что также останавливает вызревание (гидратацию). Необходимо помнить, что гидратация невозможна без молекул воды и уход за бетоном заключается, в том числе, и в постоянном увлажнении в процессе набора прочности. В графике твердения бетона можно посмотреть взаимосвязь температурного режима и сроков вызревания бетона (дано для бетона марки М400), но нужно учитывать, что если в раствор вводятся специальные добавки (модификаторы — ускорители твердения), то время набора прочности бетона может быть значительно меньше.

График набора прочности бетона:

Стойкость бетона к внешним воздействиям

Коррозия бетона

Коррозия бетона (разрушение цементного камня) происходит вследствие многих факторов:

  • влияния окружающей среды,
  • механических воздействий,
  • проникновения воды,
  • изменения температур (замораживание/оттаивание, нагрев/резкое охлаждение).

Нарушение структуры цементного камня сопровождается понижением его сцепления с армирующими элементами, повышением водопроницаемости и, как результат, снижением прочности. Для повышения коррозийной стойкости бетона рекомендуются такие меры:

  • использование специальных кислотостойких, глиноземистых или пуццолановых цементов;
  • введение в смеси гидрофобизирующих, жаростойких или морозостойких добавок;
  • увеличение плотности бетона. Большое влияние на стойкость бетона, кроме состава смеси и соотношения компонентов, оказывает технология приготовления и доставки, укладки и последующего ухода. Виброперемешивание смеси увеличивают активность цемента и позволяют получить тесто с макрооднородной структурой, а транспортировка в миксерах – избежать его расслоения при доставке на объект. Эффект от виброуплотнения при укладке теста объясняется вытеснением пузырьков воздуха: в неуплотненной смеси он может достигать 45%. Удаление воздуха обеспечивает защиту бетона от коррозии, увеличение прочности, морозо-, жаростойкости, а также снижает водопроницаемость бетона.

Морозостойкость бетона

Воздействие на бетон поочередного замораживания/оттаивания приводит к его растрескиванию. Объясняется это тем, что в замороженном состоянии влага, находящаяся в порах материала, превращается в лед, а значит, увеличивается в объеме (до 10%). Это приводит к повышенному внутреннему напряжению бетона, а в результате и к его растрескиванию и разрушению.

Морозостойкость бетона тем ниже, чем больше доступ к проникновению влаги: объем пор, в которых может накапливаться вода (макропористость) и уровень капиллярной пористости.

Повышение морозостойкости бетона происходит за счет уменьшения показателей макро и микропористости, а также введением гидрофобных воздухововлекающих добавок. С их помощью в бетоне образуются резервные поры, не заполняемые водой в обычных условиях. При замерзании воды, уже попавшей внутрь бетона, часть ее перемещается в эти поры, тем самым снимая внутреннее давление. Использование глиноземистых цементов также увеличивает морозостойкость материала.

Так как при возведении объектов предъявляются различные требования к свойствам бетона по морозоустойчивости, производится бетон с классом устойчивости к циклам замораживания/оттаивания от F25 до F1000. Для гидротехнических сооружений необходима марка бетона по морозостойкости от F200, а для возводимых в зонах с суровым климатом – от F800 (спецификация производится, исходя из среднесуточной температуры для данного региона).

Водонепроницаемость бетона

Разрушение бетона под воздействием жидких сред происходит не только при отрицательных температурах. Влага имеет свойство вымывать легкорастворимые компоненты из любого вещества, а один из компонентов, при затворении бетонного теста, гашеная известь (гидрат окиси кальция) – водорастворимое вещество. Его вымывание приводит к нарушению структуры и разрушению бетонных блоков и фундаментов. Кроме того, находящиеся в воде кислотные компоненты также оказывают неблагоприятное влияние на состояние материала. На сегодняшний день существуют различные способы защиты бетона от разрушения вследствие воздействия влаги.

Избежать негативного влияния воды можно использованием пуццоланового или сульфатостойкого портландцемента, введением в раствор гидрофобных добавок в бетон для водонепроницаемости, а также применением специальных пленкообразующих покрытий, препятствующих проникновению влаги и уплотняющих добавок. По параметру водонепроницаемости бетон подразделяется на классы (марки). Существуют марки бетона по водонепроницаемости (характеризуется односторонним гидростатическим давлением, измеряется в кгс/см²) от W2 до W20.

Читайте также:  Перемычки железобетонные

Устойчивость к воздействию высоких температур

Если возводимые бетонные сооружения или отдельные изделия будут эксплуатироваться при постоянных высоких температурах, то необходимо выбирать жаростойкий бетон соответствующего класса, так как обычный под воздействием жара теряет прочность и дает усадку вследствие потери цеолитной, абсорбционной и кристаллизационной воды. Это приводит к растрескиванию, частичному, а затем и полному разрушению бетона. Жаростойкий бетон обозначается BR и подразделяется в соответствии с предельно допустимой температурой применения на классы от И3 до И18 (или U3-U18).

Для класса И3 предельно допустимая температура составляет +300°С, а для И18 — +1800°С.

Кроме того существует подразделение на марки по термостойкости:

  • для водных теплосмен — Т(1)5, Т(1)10, Т(1)15, Т(1)20, Т(1)30, Т(1)40;
  • для воздушных теплосмен — Т(2)10, Т(2)15, Т(2)20, Т(2)25.

Последний параметр обозначает способность выдерживать смены температур без деформаций и снижения прочности.

Полезное по теме:


Прочность бетона

Прочность бетона определяется его сопротивлением различным си­ловым воздействиям — сжатию, растяжению, изгибу, срезу. Один и тот же бетон имеет разное временное сопротивление при различных силовых воздействиях. Исследования показали, что теории прочно­сти, предложенные для других материалов, к бетону не применимы. Поэтому количественная оценка прочности бетона в настоящее вре­мя основывается на осреднённых опытных данных, которые прини­маются в качестве исходных при проектировании любых бетонных и железобетонных конструкций.

Отсутствие закономерности в расположении отдельных частиц, составляющих бетон, приводит к тому, что при испытании образ­цов, изготовленных из одной и той же бетонной смеси, получают различные показатели временного сопротивления — разброс проч­ности. Кроме того, необходимо помнить, что механические свойства цементного камня и заполнителей существенно отличаются друг от друга; к тому же структура бетона изобилует дефектами, которыми, помимо пор, являются пустоты около зёрен заполнителя, возника­ющие при твердении бетона.

Прочность бетона на осевое сжатиесчитается основной его характеристикой, так как наиболее ценным качеством бетона явля­ется его высокая прочность на сжатие. Она в лабораторных усло­виях может определяться на образцах в форме кубов, призм или цилиндров. У нас в стране для оценки прочности бетона при сжа­тии используют преимущественно кубы.

Так как бетон представляет собой неоднородный искусственный каменный материал, то для получения достоверных сведений об его прочности в соответствии с действующими стандартами испытыва­ют партию образцов и определяют (средний предел прочности на осевое сжатие бетонных кубов с ребром 150 мм) и (средний предел прочности на осевое сжатие эталонных бетонных образцов призм).

Кубиковая прочность.При осевом сжатии кубы (как и другие сжатые образцы) разрушаются вследствие разрыва бетона в попе­речном направлении. Наклон трещин обусловлен влиянием сил тре­ния, которые развиваются на контактных поверхностях между по­душками пресса и опорными Гранями куба (рис. 2.2а). Силы трения, направленные внутрь, препятствуют свободным поперечным дефор­мациям бетона вблизи опорных поверхностей и тем самым повыша­ют его прочность на сжатие (создаётся эффект обоймы). Удержи­вающее влияние сил трения по мере удаления от торцевых граней куба уменьшается, поэтому после разрушения куб приобретает фор­му четырех усеченных пирамид, сомкнутых малыми основаниями. Если при осевом сжатии куба удаётся устранить или значитель­но уменьшить (с помощью смазки контактных поверхностей, на­пример, парафином или картонных прокладок) влияние сил опор­ного трения, то характер его разрушения и прочность изменяют­ся (рис. 2.2б).

Рисунок 2.2 – Характер разрушения бетонных кубов: а — при наличии трения по опорным плоскостям; б — при отсутствии трения; 1 — силы трения; 2 — трещины; 3 — смазка.

В этом случае поперечные деформации проявляют­ся свободно и трещины разрыва становятся вертикальными, параллельными действию сжимающей силы, а временное сопротивление бетона сжатию существенно уменьшается. Согласно стандарту кубы испытывают без смазки контактных поверхностей и при отсутствии прикладок.

Опытами установлено, что прочность бетона одного и того же состава зависит от размеров куба. За стандартные (эталонные) ла­бораторные образцы принимают кубы с ребром 150 мм. При испыта­ниях кубов иных размеров результаты их испытаний с помощью поправочных коэффициентов приводят к результатам испытаний эта­лонных кубов.

Призменная прочность.Реальные железобетонные конструкции по своей форме и размерам существенно отличаются от лаборатор­ных кубов. В них чаще всего один размер превышает два других (например, пролёт — ширину и высоту изгибаемого элемента; высо­та сжатого элемента — размеры его поперечного сечения).

В связи с тем, что при испытаниях бетона при переходе от об­разца в форме куба к образцу в форме призмы (при одинаковой площади их сечения) временное сопротивление сжатию при увели­чении h уменьшается (рис. 1.3), кубиковая прочность не может быть непосредственно использована в расчётах прочности элементов кон­струкций, а служит только для контроля качества бетона в производственных условиях.

Уменьшение временного сопротивления бетона сжатию при пе­реходе; от образцов в форме куба к образцам в форме призмы объясняется тем, что при увеличении отношения h/a постепенно ослабевает влияние сил трения, возникающих между торцами образца и плитами пресса, на напряжённое состояние образца в его средней по высоте части, а для призм с h/a ≥ 4 это влияние практически полностью исключено.

Принято определять призменную прочность бетона , основную и наиболее стабильную характеристику прочности бетона на сжа­тие, используемую в расчётах на прочность сжатых и изгибаемых элементов, на эталонных призмах с размерами 150 ´ 150 ´ 600 мм (h/ a = 4).

Рисунок 2.3 – График зависимости призменной прочности бетона от
отношения размеров испытываемого образца

Опытами установлено, что при 4 ≤ h/a

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома – страшная бессонница, которая потом кажется страшным сном. 9065 – | 7314 – или читать все.

Прочность бетона (на растяжение, при сжатии): от чего зависит, как определить

Прочность бетона – определяющий показатель бетонного раствора, который обуславливает задачи и условия его использования. Бетонная смесь используется повсеместно в проведении ремонтно-строительных работ частных и промышленных объектов. Рецептов приготовления бетона существует множество, состав и пропорции компонентов напрямую влияют на свойства и характеристики, а также сферу использования цементного раствора.

Прочность бетона – определяющая характеристика, которая отображается в маркировке. Непосредственно прочность определяет марку и класс раствора. Данные показатели указываются в различных ГОСТах, СНиПах, нормативных документах, определяют эксплуатационные качества и свойства бетонных элементов, конструкций, зданий и т.д.

Знание показателей прочности бетона очень важно при выполнении любых работ, так как позволяет точно выполнить расчеты, верно подобрать смесь подходящих марки и класса для конкретной задачи, будучи уверенным в прочности, надежности и долговечности элемента, конструкции. Застройщики в обязательном порядке проверяют прочность бетона на растяжение, сжатие, изгиб и т.д. прежде, чем начинать работы.

Какие показатели определяют прочность бетона:

  1. Марка – значение средней прочности, обозначается буквой М, находится в пределах 50-1000, зависит от объема и качества цемента в смеси. Отображает прочность на сжатие в кгс/м2 через 28 суток после заливки. Чем больше цифра рядом с индексом, тем более прочным считается бетон и тем дороже он стоит. Высокопрочный раствор обычно более сложен в работе: быстрее застывает, трудно укладывается.
  2. Класс – гарантируемая прочность на сжатие, которую бетонное изделие демонстрирует в 95% проверках, обозначается буквой В, находится в диапазоне 3.5-80, считается в МПа.

Что это такое и основные виды

Пытаясь разобраться, от чего зависит прочность бетона, что это такое и какие есть основные виды показателя, необходимо изучить все основные аспекты процесса приготовления смеси, состав, условия и особенности.

Факторы, влияющие на прочность бетона:

  • Качество цемента в составе – чем более высокая марка самого вяжущего, тем прочнее будет бетон.
  • Объем цемента в растворе – считается из расчета на 1 кубический метр. Качество и количество цемента взаимосвязаны – при условии большого объема и низкой марки или высокой марки и недостаточного количества результат будет не тем, который ожидается. Готовить нужно по рецепту, указанному в ГОСТе и из цемента подходящей марки.
  • Объем воды – также напрямую влияет на прочность: недостаточное количество приведет к невозможности правильно уложить смесь, превышение объема способствует более быстрому прохождению процесса гидратации, что делает бетон слабее за счет появляющихся пор и трещин.
  • Качество заполнителей – форма, фракция, чистота. Наполнители с шероховатой поверхностью неправильной формы обеспечивают лучшую адгезию материалов, входящих в бетон (прочность повышается), грязные частицы и гладкая поверхность понижают сцепляемость и прочность соответственно.

  • Качество перемешивания компонентов – продолжительность, способ также влияют: если раствор смешивали меньшее время, чем нужно, компоненты не занимают свое место в тесте и прочность понижается.
  • Порядок укладки , способ обработки стыка после перерыва в укладке – все это влияет на качество и прочность монолита.
  • Вибрация – очень важный процесс, который повышает предел прочности бетона в среднем на 10-30% в сравнении с тем, что уплотнялся вручную.
  • Условия твердения – температура, влажность, от чего во многом зависит прочность. Самые высокие показатели у смеси, которая твердеет во влажной среде со средней температурой, а вот в жаре и сухости раствор быстро теряет влагу, может покрываться трещинами. При температуре ниже нуля бетон вообще прекращает твердеть.
  • Замерзание – если твердение дошло до определенной точки, временное замерзание монолита просто приостанавливает процесс, потом он продолжается без потерь свойств. Если же бетон замерзает на ранней стадии прохождения реакции, конечная прочность существенно понижается.

Основные виды прочности бетона:

  1. Проектная – та, что указана в нормативных документах и предполагает способность монолита полностью выдерживать указанные нагрузки после того, как прошел полный срок твердения (28 суток).
  2. Нормативная – та, что указана в ТУ или ГОСТе.
  3. Фактическая – среднее значение, которое высчитывают по результатам проведенных испытаний.
  4. Требуемая – максимально допустимый показатель для эксплуатации, который устанавливает лаборатория предприятия.
  5. Распалубочная – та, при которой можно демонтировать опалубку, разбирать формы.
  6. Отпускная – показатель, при котором допускается отгружать изделие потребителю.

Виды прочности касательно марки и качества: прочность бетона при сжатии, на изгиб, осевое растяжение, а также передаточная прочность.

Прочность на сжатие

В контексте данной характеристики бетон можно сравнить с камнем – он намного лучше сопротивляется сжатию, чем с растяжением. Основной критерий прочности бетона – это предел прочности на сжатие.

Для определения значения из раствора заливают образцы в виде куба, их помещают под специальный пресс. Давление постепенно увеличивается и в момент, когда образец трескается, экран прибора фиксирует значение. Расчетный показатель прочности на сжатие определяет присвоение бетону класса. Высыхает и твердеет смесь в течение 28 суток (и больше), по завершению этого срока осуществляют проверку, так как смесь уже должна достичь расчетной/проектной прочности.

Прочность на сжатие представляет собой характеристику механических свойств материала, стойкости к нагрузкам и давлению. Это показатель границы сопротивления, которое оказывает застывший раствор механическому воздействию сжатия, отображенному в кгс/см2. Наименьшей прочностью на сжатие обладает смесь М15, наибольшей – М800.

Прочность на сжатие отображается и в марке, и в классе. Класс В – это кубиковая прочность, обозначается в МПа. Марка М – предел прочности на сжатие в кгс/см2. Данные соответствия марок, классов и показателей указаны ниже в таблице.

Читайте также:  Виды и назначение арматуры

Прочность на изгиб

Данный показатель повышается по мере увеличения цифрового обозначения марки. Обычно показатели прочности на изгиб и растяжение меньше в сравнении с нагрузочной способностью бетона. Молодой бетон демонстрирует значение 1/20, старый – 1/8. Прочность на изгиб обязательно учитывается в проектировании перед строительством.

Чтобы понять, какой уровень прочности на изгиб демонстрирует бетон, заливают заготовку в виде бруса с размерами, к примеру, 60 х 15 х 15 сантиметров (эталонный образец). Бетон заливают в формы, штыкуют, оставляют на несколько дней, потом извлекают из форм и дают полностью застыть в течение 28 суток при оптимальных условиях: температура минимум 15-20 градусов и влажность до 80-90%. Периодически образцы обкладывают сырыми опилками (их увлажняют регулярно) или поливают водой.

Когда заготовка полностью затвердевает, ее устанавливают на подпорки, которые находятся на определенном расстоянии, в центре же размещают нагрузку, постепенно ее увеличивая до тех пор, пока образец не будет разрушен.

Для этого может использоваться специальный гидравлический пресс. Размеры балки и расстояния между двумя подпорками могут отличаться.

Формула для подсчета прочности на изгиб: R изг = 0.1 PL / bh2.

Тут:

  • L – это расстояние между подпорками
  • Р – масса нагрузки + масса образца
  • b и h – ширина и высота сечения образца (бруса)

Существенно повысить значение до определенной величины можно с помощью армирования – это сравнительно недорогой и эффективный метод.

Осевое растяжение

Данный параметр при проектировании несущих конструкций, как правило, не учитывается вовсе. Он важен для определения способности бетона не покрываться трещинами в случае резких перепадов температуры/влажности. Растяжение – это некоторая составляющая прочности на изгиб.

Значение осевого растяжения определяется довольно трудно. Один из используемых способов – растяжение образцов балок на предусмотренном для этого специальном оборудования. Бетонный монолит разрушается и от воздействия двух противоположных растягивающих сил. Способность противостоять осевому растяжению играет важную роль в приготовлении бетона, который используется для дорожного покрытия и резервуаров, где трещины просто недопустимы.

Данный показатель обозначается буквами Bt, находится в диапазоне 0.4-6 МПа.

Передаточная прочность

Данный вид прочности – это нормируемый показатель напряженных элементов при передаче на него напряжения от армирующих деталей. Прочность передаточная указывается в нормативных документах и ТУ для отдельного вида изделий. Обычно назначается минимум 70% проектной марки, напрямую зависит от свойств арматуры.

Рекомендуемым значением считается минимум 15-20 МПа с учетом вида армирования. Если обозначать передаточную прочность, то это показатель, который демонстрирует уровень, при котором армировочные стержни не проскальзывают с кондукторов при снятии.

Минимальная величина Rbp обеспечивает трещиностойкость и прочность изделия при обжатии, перевозке и подъеме. Чем ниже Rbp, тем большими будут потери от ползучести и выше сила обжатия. Но чем выше Rbp, тем длительнее должна быть термообработка, тем дороже обходится конструкция. По опыту многие мастера указывают, что оптимальной Rbp считается 0.7 В.

Методы определения прочности

Понимая, как определить прочность бетона, можно более точно составлять проектную документацию, выполнять расчеты для тех или иных конструкций. Как правило, прочность бетона определяют в условиях лаборатории, с использованием специальных приборов, на контрольных образцах и отобранных пробах. Испытания контролируются и регламентируются по ГОСТу, принятому для того или иного вида бетонной смеси.

Кроме того, прочность бетона определяется на строительном объекте в процессе выполнения работ, что позволяет контролировать качество смеси.

Основных методов определения прочности бетона существует два: разрушающие и неразрушающие. Обычно прочность бетона в промежуточном возрасте не определяется, чаще всего используют уже застывшие образцы или куски монолита.

Разрушающий способ

Данная группа методов требует разрушения опытного образца, который готовится из контрольной пробы бетонного раствора либо же изымается из монолита алмазным буром. Выпиленные цилиндры или залитые кубики раздавливаются под прессом. Нагрузку повышают непрерывно, равномерно в течение не очень длительного времени, пока контрольный образец не разрушится. Результаты критических нагрузок фиксируют, дальше считают показатели.

Разрушающий метод – наиболее точный из всех, используемых для определения прочности бетона. Так, обследование здания способом раздавливания бетонных проб позволяет определить прочность монолита на сжатие. По действующим СНиПам, это обязательная процедура до сдачи сооружения в эксплуатацию.

Неразрушающий способ

Эта группа методов не требует разрушения образцов и вообще может не предполагать их использования. Испытания осуществляют с применением разных инструментов и приборов.

Виды неразрушающих методов исследования по типу применяемых инструментов:

  1. Ударное воздействие
  2. Частичное разрушение
  3. Ультразвуковое обследование

Способ ударного воздействия базируется на применении силового воздействия ударного типа к бетонной поверхности.

Три основных способа исследования прочности ударом:

  • Упругий отскок – определяется величина отскока от монолита бойка ударника.
  • Метод ударного импульса – фиксируется сила удара и появляющаяся при этом энергия.
  • Пластическая деформация – силовое воздействие на бетонный монолит прибором с закрепленными на его ударной поверхности штампов в виде диска или шарика. В соответствии с глубиной отпечатков удара считают прочность.

Частичное разрушение предполагает местное воздействие на бетонный монолит и повреждает его несильно.

Методы частичного разрушения:

  • Скалыванием – предполагает механическое скользящее воздействие на ребро конструкции с фиксацией усилий, которые провоцируют откалывание участка.
  • На отрыв – заключается в прикреплении к участку монолита металлического диска на специальный клей, а потом его отрыв. Необходимое для разрушения материала усилие фиксируют, используют для вычислений показателя прочности.
  • Отрыв со скалыванием – дает больше точности: на участке монолита закрепляют анкерные устройства, потом их отрывают.

Ультразвуковое исследование предполагает использование специального прибора, который выдает ультразвуковые волны. В процессе определяется скорость ультразвука, который проходит через бетонную конструкцию. Таким образом исследуются как поверхность бетона, так и его глубинные слои. Но есть погрешность в расчетах.

Классификация и применение бетонов

Деление бетона на виды достаточно условное. Как правило, легкими считают бетоны марок М10-М200, обычными М250-М400, тяжелыми М450 и выше.

Виды бетона по плотности:

  1. Легкий (облегченный) – производится с включением в состав пористых заполнителей (туф, пемза, керамзит): крупнопористый, ячеистый бетоны, газо/пенобетон и т.д. Плотность до 1200 кг/м3, используются в малоэтажном строительстве, актуальных для утепления, отличаются сравнительно невысокой прочностью.
  2. Тяжелый бетон – производится с введением в состав горных пород (диабаз, гранит, известняк), плотность равна 1800-2500 кг/м3. Применяется для железобетонных, бетонных конструкций гражданских, промышленных зданий, для создания транспортных и гидротехнических объектов в том числе.
  3. Особо тяжелый бетон – готовится с использованием железной руды, опилок, стружки. Актуальна смесь для строительства специальных объектов, способных противостоять радиоактивному излучению, плотность выше 2500 кг/м3.

Виды бетона по классу морозостойкости:

  • F15 – подходит для внутренних работ (создание перегородок, заливка пола и т.д.)
  • F25 – самое малое значение для кладки внешних стен отапливаемых зданий.
  • F50 и более – подходит для фундамента в регионах со средним морозом.

Водостойкость бетона обозначается буквой W, может варьироваться в пределах W2-W20, говорит о максимальном давлении водяного столба, которое способен выдержать бетон, единицы измерения атм•10-1.

Как определить прочность бетона?

Прочность бетона – одна из важнейших характеристик этого строительного материала. Бетон лучше всего сопротивляется усилиям на сжатие. Поэтому проектирование осуществляется таким образом, чтобы на конструкцию действовали в основном силы сжатия. Если конструкция будет испытывать усилия на растяжение и изгиб, то при расчете проекта учитывают прочность на растягивающие усилия и растяжение при изгибе.

Характеристики прочности бетона

Порочность бетона на сжатие характеризуют марка или класс прочности, которые определяются в стандартном варианте в возрасте 28 суток. В зависимости от эксплуатационных особенностей строительной конструкции, момент определения прочности материала на сжатие может устанавливаться индивидуально. Это могут быть 3,7, 60, 90, 180 суток.

В проекте на строительную конструкцию пользуются понятием класса прочности и только в особых случаях – марки.

Таблица зависимости между классами и марками бетонов

Технологические факторы, влияющие на прочность бетона

Прочность бетона зависит от ряда факторов, среди которых:

  • Активность цемента. Между прочностными характеристиками бетонного продукта и активностью вяжущего существует линейная зависимость. Чем выше активность, тем лучше прочностные показатели.
  • Количество вяжущего. Повышение содержания вяжущего положительно влияет на прочностные характеристики только до определенного процентного содержания. Выше – прочностные показатели растут незначительно, а другие технические параметры ухудшаются – растут усадка и ползучесть.
  • Водоцементное соотношение. Оптимальная величина определяется необходимой маркой удобоукладываемости. Обычно в смеси содержится 40-70% воды. Превышение оптимального количества жидкости инициирует образование пор, снижающих прочность конечного продукта.
  • Гранулометрический и минералогический состав заполнителей. На прочность бетонного продукта отрицательно влияют: неоптимальный состав мелкого и крупного заполнителей, наличие в них пылевидных и глинистых частиц.
  • Качество воды. Вода, используемая для затворения смеси, берется из водопровода питьевого назначения или проверяется в лаборатории на присутствие в ней примесей, отрицательно влияющих на качество конечного продукта.
  • Вибрирование бетонной смеси при укладке. При вибрировании из смеси выходит лишний воздух, снижающий прочностные характеристики. Однако излишнее вибрирование приводит к расслаиванию смеси.
  • Соблюдение оптимальных условий твердения.

Способы определения прочности

ГОСТ 10180-2012 регламентирует правила подготовки образцов и проведения испытаний прочности на сжатие в лабораторных условиях В соответствии со стандартом образцами могут быть:

  • куб с длиной ребра 100, 150, 200, 250, 300 мм;
  • цилиндр с диаметром основания 100, 150, 200, 250, 300 мм, высотой не менее диаметра основания.

Образцы изготавливают с соблюдением условий, соответствующих реальным условиям твердения смеси. Твердение продукта может происходить в нормальных условиях или с использованием тепловой обработки. Испытания проводят на испытательной машине-прессе. Образец нагружают со стабильной скоростью нарастания усилия до его разрушения.

Существуют неразрушающие способы контроля прочности бетона, позволяющие контролировать этот параметр в уже готовой конструкции:

  • Механические. Эти испытательные технологии основаны на показаниях приборов. Основные методы – упругий отскок, ударный импульс, отрыв, скалывание, отрыв со скалыванием.
  • Ультразвуковой. Основой этого способа является зависимость скорости прохождения ультразвуковых волн через материал от его прочностных характеристик. Технология востребована для определения прочностных характеристик длинномерных строительных конструкций – ригелей, колонн, балок.

Области применения бетона различных классов прочности

  • В7,5. Такие бетоны содержат малое количество вяжущего и относятся к категории «тощих». Применяются в основном при проведении подготовительных строительных работ. С их помощью изготавливают подбетонки, на которых устраивается железобетонный фундамент. Такой подготовительный бетонный слой не допускает протекания цементного молочка из фундаментной бетонной смеси в грунт.
  • В10-В12,5. Такие материалы также обладают невысокой прочностью. Применяются для устройства подбетонного слоя, тонкослойных стяжек, фундаментов легких строительных конструкций.
  • В15-В20. Бетонные смеси этих классов прочности востребованы в малоэтажном индивидуальном строительстве при возведении небольших строений, для устройства внутренних перегородок, лестничных маршей.
  • В22,5. Широко востребованы в малоэтажном жилом и промышленном строительстве, при производстве ЖБИ.
  • В25-В22,7. Применяются при сооружении высоконагружаемых строительных конструкций – несущих балок, плит, колонн в многоэтажных зданиях.
  • В30 и выше. Такие бетоны, обладающие высокой прочностью, применяют в промышленном строительстве и для сооружения объектов высокой опасности и ответственности. Из-за высокой схватываемости применяются с добавками, регулирующими скорость твердения смеси.

  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

Ссылка на основную публикацию