Самовосстанавливающийся бетон (самозалечивающийся эластичный)

Плюсы и минусы самозалечивающегося бетона

Микроскопическая съемка T. ressei с увеличением x1000, показывающая, что споры растут одинаково хорошо как с бетоном, так и без него [8]

Разрушительно влияют на бетон влага, перепады температур, воздействие химикатов, коррозия, со временем материалу свойственно рассыхаться.
Самовосстанавливающийся бетон отличается более высокой стойкостью к влиянию внешних разрушающих факторов и обладает свойством самовосстановления.

  • подземное строительство;
  • подводное строительство;
  • высотные здания;
  • транспортные сооружения мостового типа.

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Кодзоев Мухамад-Басир Хаджимуратович, Исаченко Сергей Леонидович

Бетон один из наиболее распространенных строительных материалов в мире, за счет своей прочности и экономичности производства. Он состоит из вяжущего вещества (цемента), крупных и мелких заполнителей, воды. По мере затвердения бетон становится хрупким и под действием нагрузок в нем возникают трещины , которые являются открытым каналом для перемещения влаги. После рядов циклов замерзания и оттаивания, надломы расширяются, а потом вода доходит до арматуры и запускает процесс коррозии. Ржавчина занимает больший объем, чем армирующий материал (арматура) и бетон начинает трескаться и расслаивается. Трещины различных размеров приходится устранять вручную, что является трудоемким и дорогостоящим процессом. А также не всегда удается своевременно устранить эту проблему. Самовосстанавливающийся бетон революционный строительный материал , разрешающий все эти проблемы и, безусловно, это строительный материал будущего.

Лактат кальция или кальций молочнокислый — это кальциевая соль молочной кислоты. Порошок белого цвета, хорошо растворимый в теплой воде. Химическая формула — 2(C3HsO3)Ca.

Микробиология на службе строительства

Вопрос прочности бетона волновал исследователя давно. Его пытливый ум озадачился следующим фактом: с течением времени бетон становится более твердым, однако в нем возникают и распространяются микротрещины. Из-за них в структуру материала попадает вода, что, в свою очередь, приводит к серьезным негативным последствиям, таким как:

  1. Снижение прочности из-за водной эрозии.
  2. Повреждение армирующих элементов за счет коррозии.
  3. Распространение зловредных микроорганизмов.
  4. Нарушение герметичности конструкций.
  5. Лавинообразное падение характеристик бетонной конструкции.

До работы Джонкерса проблему микротрещин пытались решить различными методами. Наибольшее распространение получили различные пропитки, наносимые на готовые конструкции. К несчастью, технология их использования не всегда отличалась простотой, да и сами они не были полностью безопасными для человека.

На разработку бетона нового класса исследователю понадобилось около 3-х лет, однако, время было потрачено не напрасно. В результате появился материал, способный самостоятельно ликвидировать микротрещины.

  • Бактерии упаковываются в растворимые капсулы с лактатом кальция.
  • Капсулы добавляются в бетонный раствор, не причиняя вреда ни микроорганизмам, ни раствору.
  • В сухом бетоне, бактерии находятся в «спячке», никак себя не проявляя.
  • Когда в материале появляются микротрещины, сквозь которые просачивается вода, бактерии активизируются.
  • Потребляя пищевой ресурс, микроорганизмы вырабатывают известняк.
  • Слой известняка постепенно накапливается, заполняя трещину.

Самовосстанавливающийся бетон – стройматериал будущего

Главная страница » Самовосстанавливающийся бетон – стройматериал будущего

Бетон стабильно удерживает статус самого распространённого строительного материала. По различным оценкам, ежегодно в мире производится около 10 миллиардов тонн бетонной смеси. Однако популярный строительный материал, будучи в застывшем виде, имеет свойство деформироваться (трескаться) по истечении определённого времени. Поэтому очевидной видится тема: самовосстанавливающийся бетон, связанная с исследованиями, направленными на получение новых видов традиционного стройматериала.


Согласно этим результатам научных исследований, эксплуатационные свойства популярного стройматериала обещают подняться на совершенно иной уровень.

От современных исследований к древнему Риму

Идея бетона и самого цемента римлянами была не придумана, а заимствована у древних греков. Так, есть пример хорошо сохранившегося водопроводного резервуара в греческом городе Мегара – его конструкции были обмазаны чем-то похожим на цемент. И если изучить этот цемент, можно отыскать особый компонент, который придает крепость и прочность древнеримским зданиям.

Состав греческого цемента включал вулканический пепел – сегодня он называется «пуццолан». Тогда его добывали у холмов города Путеолы (сегодня Поццуоли) возле Везувия, от чего и произошло название вещества. Бетон с вулканическим пеплом в Древнем Риме начали применять со 2 в. до н.э. В смеси вводили пуццолан, известь, пемзу, вулканический туф, камни, песок.

Идея бетона и самого цемента римлянами была не придумана, а заимствована у древних греков. Так, есть пример хорошо сохранившегося водопроводного резервуара в греческом городе Мегара – его конструкции были обмазаны чем-то похожим на цемент. И если изучить этот цемент, можно отыскать особый компонент, который придает крепость и прочность древнеримским зданиям.

Процесс восстановления – секрет в бактериях

Колонии грибка Trichoderma reesei оказались теми самими восстановителями благодаря своей особенности выживать в щелочной среде. Споры микроорганизмов остаются живыми, оставаясь долгое время без питания. Но чем же питать проснувшиеся бактерии?

Если добавлять в бетон сахар, то уменьшится прочность материала, и вся работа будет изначально бестолковой. Начались поиски решения, которые привели к тому, что идеальным средством питания является лактат кальция.

Бактерии должны быть размещены в материале в биоразлагаемых пластиковых капсулах, там же располагается и их питание.

Бетон даёт трещины, в них попадает вода, пластик под её воздействием растворяется. Бактерии начинают процесс размножения и питания лактатом кальция. В результате их жизнедеятельности вырабатывается известняк, прочно закрывающий трещинки.

Видео о «волшебном» материале:



Бетон даёт трещины, в них попадает вода, пластик под её воздействием растворяется. Бактерии начинают процесс размножения и питания лактатом кальция. В результате их жизнедеятельности вырабатывается известняк, прочно закрывающий трещинки.

Виды эластобетона

На практике используется несколько типов материала, отличающихся свойствами и характером действия:
• пластификаторы;
• противоморозные;
• модификаторы;
• замедлители;
• отвердители;
• вещества для самовыравнивания поверхностей.

Эластичные свойства придают цементному составу специальные добавки – пластификаторы. В их основе содержатся полимерные компоненты, которые вносятся в сухие смеси и жидкие бетонные растворы. Делается это с целью получения заданной текучести, влагопоглощения, пластичности. Вместе с тем они не должны иметь запаха, хорошо смешиваться с основным веществом – цементом, быть устойчивыми к воздействию растворителей, обладать минимальным уровнем испаряемости.

Важно! Пластификаторы увеличивают прочность цементного раствора после его окончательного отвердевания. Кроме обеспечения упругости, они снижают массу раствора. Например, перекрытие с такой бетонной стяжкой весит меньше. Следовательно, сокращается и нагрузка на опоры.

Основной проблемой всех типов бетонов является постепенное снижение прочности в результате влияния воды и низких температур. Добавки поднимают температурный порог промерзания. Это действие похоже на работу антифриза в воде, который не дает ей замерзнуть при отрицательной температуре. Слой бетона в 10 см может застывать в течение месяца при положительных ее значениях.

Противоморозные добавки сокращают сроки застывания независимо от наружного температурного режима. Замедление действия низкой температуры на смесь позволяет ей схватываться, а не промерзать. Так бывает с обычным раствором, положенным при морозах, после оттаивания стяжка рассыпается. Работа при -25°С не ухудшает строительных свойств кладки и стяжки. Излишки жидкости, благодаря добавкам, в ходе застывания испаряются, а не замерзают, разрывая конструкцию.

Модифицирующие средства изменяют внутреннюю структуру смеси таким образом, что расслоение бетона отсутствует даже при появлении микротрещин и попадании воды. Принцип действия модифицирующего порошка заключается во взаимодействии с водой. При этом образуется нейтральный или низкощелочной раствор. Кроме названных качеств, модификаторы снижают расход стройматериалов, уменьшают температуру замерзания жидкости, улучшают слипаемость отдельных ингредиентов.

Замедлители увеличивают период застывания цементного раствора. Такое свойство полезно при перевозке его на большие расстояния. Например, чем выше марка цемента, тем он быстрее застывает. Поэтому введение в состав замедлителей позволит устранить риск быстрого схватывания.

Отвердители или ускорители, наоборот, сокращают время отвердевания. Они проникают в микроструктуру цемента, равномерно распределяясь в молекулярной решетке. Данное свойство важно при непрерывности процесса и для увеличения скорости строительных работ. Ускорители, как противоморозные добавки, можно применять при низких значениях температуры воздуха. Специальные средства для самовыравнивающейся смеси придают ей высокую прочность и улучшают характеристики подвижности и текучести.

Заметка! Выпускаемые спецдобавки для бетонных смесей ускоряют работу по кладке или стяжке, отделке наружных покрытий. Если раньше для выведения воздуха применялись различные механические уплотнители, то теперь его удаление происходит без участия людей или оборудования.

Заметка! Выпускаемые спецдобавки для бетонных смесей ускоряют работу по кладке или стяжке, отделке наружных покрытий. Если раньше для выведения воздуха применялись различные механические уплотнители, то теперь его удаление происходит без участия людей или оборудования.

Как работает биобетон

Специально подобранные виды бактерий рода Bacillus, наряду с кальциевым питательным веществом, известным как лактат кальция, а также азотом и фосфором, добавляются к ингредиентам бетона при его смешивании. Эти самовосстанавливающиеся агенты могут дремать в бетоне до 200 лет.Однако, когда бетонная конструкция повреждена и вода начинает просачиваться через трещины, которые появляются в бетоне, споры бактерий прорастают при контакте с водой и питательными веществами. Активировавшись, бактерии начинают питаться лактатом кальция. По мере того как бактерии питаются кислородом, он расходуется, а растворимый лактат кальция превращается в нерастворимый известняк. Известняк затвердевает на потрескавшейся поверхности, тем самым уплотняя ее. Он имитирует процесс, с помощью которого переломы костей в человеческом теле естественным образом исцеляются клетками остеобластов, которые минерализуются, чтобы переформировать кость. Потребление кислорода при бактериальном превращении лактата кальция в известняк имеет дополнительное преимущество. Кислород является важным элементом в процессе коррозии стали, и когда бактериальная активность израсходовала его полностью, это увеличивает долговечность стальных железобетонных конструкций. Две части самовосстанавливающегося агента (бактериальные споры и питательные вещества на основе лактата кальция) вводятся в бетон в виде отдельных гранул керамзита шириной 2-4 мм, которые гарантируют, что агенты не будут активированы в процессе смешивания цемента. Только когда трещины открывают гранулы и входящая вода приводит лактат кальция в контакт с бактериями, они активируются. Испытания показали, что когда вода просачивается в бетон, бактерии быстро прорастают и размножаются. Они превращают питательные вещества в известняк в течение семи дней в лаборатории. На улице, при более низких температурах, процесс занимает несколько недель. Начальная точка исследования заключалась в том, чтобы найти бактерии, способные выживать в экстремальной щелочной среде. Цемент и вода имеют значение рН до 13, когда смешиваются вместе, обычно это враждебная среда для жизни: большинство организмов погибает в среде со значением рН 10 или выше. Поиск сосредоточился на микробах, которые процветают в щелочных средах, которые можно найти в естественных условиях, таких как щелочные озера в России, богатые карбонатами почвы в пустынных районах Испании и содовые озера в Египте. Образцы эндолитических бактерий (бактерий, которые могут жить внутри камней) были собраны вместе с бактериями, обнаруженными в отложениях озер. Было обнаружено, что штаммы бактерий рода Bacillus процветают в этой высокощелочной среде. Еще в Дельфтском университете бактерии из образцов выращивали в колбе с водой, которая затем использовалась в качестве части водной смеси для бетона. В небольшой бетонный блок были встроены различные виды бактерий. Каждый бетонный блок будет оставлен на два месяца, чтобы его крепко установить. Затем блок измельчали в порошок, а остатки проверяли, выжили ли бактерии. Было обнаружено, что единственной группой бактерий, которые смогли выжить, были те, которые производили споры, сравнимые с семенами растений. Такие споры имеют чрезвычайно толстые клеточные стенки,которые позволяют им оставаться неповрежденными до 200 лет, ожидая лучшей среды для прорастания. Они активизируются, когда бетон начинает трескаться, пища становится доступной, а вода просачивается в структуру. Этот процесс понижает рН высокощелочного бетона до значений в диапазоне (рН от 10 до 11,5), при которых происходит активация бактериальных спор. Поиск подходящего источника пищи для бактерий, которые могли бы выжить в бетоне, занял много времени, и было испробовано много различных питательных веществ, пока не было обнаружено, что лактат кальция является источником углерода, который обеспечивает биомассу. Если он начинает растворяться в процессе смешивания, лактат кальция не влияет на время схватывания бетона.

Читайте также:  Цветной бетон: технология, своими руками

До и после. Фотографии поверхности плиты из самовосстанавливающегося бетона. Трещина видна на левом изображении, а справа белый известняк заполнил щель


Специально подобранные виды бактерий рода Bacillus, наряду с кальциевым питательным веществом, известным как лактат кальция, а также азотом и фосфором, добавляются к ингредиентам бетона при его смешивании. Эти самовосстанавливающиеся агенты могут дремать в бетоне до 200 лет.Однако, когда бетонная конструкция повреждена и вода начинает просачиваться через трещины, которые появляются в бетоне, споры бактерий прорастают при контакте с водой и питательными веществами. Активировавшись, бактерии начинают питаться лактатом кальция. По мере того как бактерии питаются кислородом, он расходуется, а растворимый лактат кальция превращается в нерастворимый известняк. Известняк затвердевает на потрескавшейся поверхности, тем самым уплотняя ее. Он имитирует процесс, с помощью которого переломы костей в человеческом теле естественным образом исцеляются клетками остеобластов, которые минерализуются, чтобы переформировать кость. Потребление кислорода при бактериальном превращении лактата кальция в известняк имеет дополнительное преимущество. Кислород является важным элементом в процессе коррозии стали, и когда бактериальная активность израсходовала его полностью, это увеличивает долговечность стальных железобетонных конструкций. Две части самовосстанавливающегося агента (бактериальные споры и питательные вещества на основе лактата кальция) вводятся в бетон в виде отдельных гранул керамзита шириной 2-4 мм, которые гарантируют, что агенты не будут активированы в процессе смешивания цемента. Только когда трещины открывают гранулы и входящая вода приводит лактат кальция в контакт с бактериями, они активируются. Испытания показали, что когда вода просачивается в бетон, бактерии быстро прорастают и размножаются. Они превращают питательные вещества в известняк в течение семи дней в лаборатории. На улице, при более низких температурах, процесс занимает несколько недель. Начальная точка исследования заключалась в том, чтобы найти бактерии, способные выживать в экстремальной щелочной среде. Цемент и вода имеют значение рН до 13, когда смешиваются вместе, обычно это враждебная среда для жизни: большинство организмов погибает в среде со значением рН 10 или выше. Поиск сосредоточился на микробах, которые процветают в щелочных средах, которые можно найти в естественных условиях, таких как щелочные озера в России, богатые карбонатами почвы в пустынных районах Испании и содовые озера в Египте. Образцы эндолитических бактерий (бактерий, которые могут жить внутри камней) были собраны вместе с бактериями, обнаруженными в отложениях озер. Было обнаружено, что штаммы бактерий рода Bacillus процветают в этой высокощелочной среде. Еще в Дельфтском университете бактерии из образцов выращивали в колбе с водой, которая затем использовалась в качестве части водной смеси для бетона. В небольшой бетонный блок были встроены различные виды бактерий. Каждый бетонный блок будет оставлен на два месяца, чтобы его крепко установить. Затем блок измельчали в порошок, а остатки проверяли, выжили ли бактерии. Было обнаружено, что единственной группой бактерий, которые смогли выжить, были те, которые производили споры, сравнимые с семенами растений. Такие споры имеют чрезвычайно толстые клеточные стенки,которые позволяют им оставаться неповрежденными до 200 лет, ожидая лучшей среды для прорастания. Они активизируются, когда бетон начинает трескаться, пища становится доступной, а вода просачивается в структуру. Этот процесс понижает рН высокощелочного бетона до значений в диапазоне (рН от 10 до 11,5), при которых происходит активация бактериальных спор. Поиск подходящего источника пищи для бактерий, которые могли бы выжить в бетоне, занял много времени, и было испробовано много различных питательных веществ, пока не было обнаружено, что лактат кальция является источником углерода, который обеспечивает биомассу. Если он начинает растворяться в процессе смешивания, лактат кальция не влияет на время схватывания бетона.

Читайте также:  Пескоцементные блоки (цементно-песчаные): виды, применение

Типы добавок и их достоинства

Стоит отметить, что существует три вида модифицирующих добавок (в народе их часто называют «эластичный бетон»), каждая из них обозначается буквой, поэтому разобраться в их особенностях не составит никакого труда.


Эластобетон А используется для повышения прочностных характеристик бетонного материала и улучшения целого ряда свойств:

В чем суть методики?

Секрет ноу-хау голландских студентов прост как все великое – в бетонную отливку вводят культуру бактерий, вырабатывающих в процессе своей жизнедеятельности кальций (по сути – тот же цементный камень). Затаившись на дне микротрещин, такие бактерии заполняют микрополоски отходами своей жизнедеятельности (кальцием), ликвидируя, таким образом, эти предтечи глубоких разломов в структуре бетона.

Причем активность биологических культур в кислой среде бетонной конструкции уже подтверждена практическими опытами. Собственно всю технологию обнаружили практически случайно, проверяя жизнедеятельность очередной колонии микроорганизмов, «засеянных» в бетон.

бактерии которые восстанавливают бетон

Преимущества методики перед традиционными способами противодействия процессам образования трещин

Новый способ «лечения» бетона от трещин сулит немалые выгоды, как изготовителям ЖБИ, так и владельцам уже потрескавшихся конструкций. Ведь до этого с процессом образования трещин боролись либо с помощью дополнительного армирования (что дорого), либо с помощью защитной пленки (что очень трудоемко, ввиду необходимости постоянного восстановления протектора). Ну а методика устранения трещин в бетоне была всего одна – расширение и заполнение свежей «заплаткой»

Новая методика позволяет защитить уже поврежденные конструкции, просто засеяв культуры на поверхность ЖБИ. Причем поверхности могут располагаться даже в «труднодоступных местах». Кроме того бактерии можно добавить в пока еще жидкий бетон. И после отвердения среды они будут «жить-поживать» в микроскопических полостях, ожидая своего часа (появления трещины).

То есть, с помощью такой технологии можно получить практически вечный, самовосстанавливающийся строительный материал, регенерирующий, как человеческая кожа.


Новый способ «лечения» бетона от трещин сулит немалые выгоды, как изготовителям ЖБИ, так и владельцам уже потрескавшихся конструкций. Ведь до этого с процессом образования трещин боролись либо с помощью дополнительного армирования (что дорого), либо с помощью защитной пленки (что очень трудоемко, ввиду необходимости постоянного восстановления протектора). Ну а методика устранения трещин в бетоне была всего одна – расширение и заполнение свежей «заплаткой»

Самовосстанавливающийся бетон

Хенк Джонкерс (Henk Jonkers) из нидерландского Делфтского технического университета создал биобетон – продукт, который может восстановить свои трещины и разломы. Джонкерс говорит, что изначально начал работу над биобетоном, когда он работал с технологом, который искал возможность улучшить безопасность бетона с помощью биологического решения. Этот производственный момент оказался правильно и в нужное время заданным вопросом. Бетон с возрастом твердеет, но в нем также появляются трещины.

По словам Джонкерса, микробиолога, трещины, которые образуются в бетоне, не просто неприглядны, они могут в конечном итоге привести к повреждению конструкции.

«Причина такой проблемы, как трещины в бетоне, это протечки», говорит Джонкерс. «Если в бетоне есть трещины, вода попадает в них и оказывается в вашем подвале или в гараже. Во-вторых, если эта вода просочится к стальной арматуре – в бетонной конструкции всегда есть стальные арматурные стержни – и если они подвержены коррозии, структура разрушается».

Джонкерсу и его команде потребовалось три года, чтобы произвести этот самовосстанавливающийся прототип, который должен преодолеть наиболее очевидное препятствие: поиск бактерий, которые могут выжить в суровых условиях бетона.

«Этот материал очень сухой, как камень или скала», говорит микробиолог. Для решения проблемы с сухостью, команда использовала палочковидную бактерию по причине ее выносливости и долголетия. Бактерии и их источник питания – лактат кальция – упакованы в крошечные капсулы, которые растворяются, когда вода попадает в трещины бетона. После освобождения, бактерии потребляют лактат кальция, в результате чего происходит химическая реакция, которая создает известняк, который затем заполняет пробелы.

Спасательная станция на озере в Нидерландах был использована в качестве места для первого применения биобетона. Тест на прототипе оказался положительным.

«Это объединение природы со строительным материалом», сказал Джонкерс. «Природа, предоставляет нам много функциональных возможностей в свободном доступе, в этом случае – известняк, производящий бактерии. Если мы можем использовать его в материалах, мы действительно можем извлечь из этого пользу, так что я думаю, что это хороший пример соединения природы и строительного материала вместе в одной новой концепции».

Биобетон готовится и смешивается как обычный бетон, но с дополнительным ингредиентом – «исцеляющим агентом». Он остается неизменным во время смешивания, но растворяется и становятся активными, если вода попадает в трещины в бетоне.

Бетон является средой с высокой щелочностью и «исцеляющие» бактерии должны ждать в покое в течение многих лет, прежде чем активируются водой. Джонкерс выбрал палочковидные бактерии, потому что они процветают в щелочной среде и производят споры, которые могут выжить в течение многих десятилетий без еды и кислорода. «Следующей задачей было не только получить активные бактерии в бетоне, но и заставить их производить ремонтный материал для бетона – это известняк» объясняет Джнкерс.

Для того, чтобы производить известняк, бактериям нужен источник питания. Сначала рассматривали такой вариант как сахар, но с добавлением сахара в смесь получается мягкий, слабый, бетон. В конце концов, Джонкерс выбрал лактат кальция, поместив бактерии и лактат кальция в капсулы, изготовленные из биоразлагаемого пластика, и добавив капсулы во влажную бетонную смесь.

Когда трещины, в конечном итоге, начинают образовываться в бетоне, в них попадает вода и открывает капсулы. Затем бактерии прорастают, множатся и питаются лактататом кальция, и при этом они соединяют вместе кальций с карбонат-ионами, образовывая кальцит или известняк, который закрывает трещины.

Ученый надеется, что его биобетон может быть началом новой эры биологических зданий. Если это так, влияние на архитектурные и инженерные методики может быть очень значительным.


Джонкерсу и его команде потребовалось три года, чтобы произвести этот самовосстанавливающийся прототип, который должен преодолеть наиболее очевидное препятствие: поиск бактерий, которые могут выжить в суровых условиях бетона.

Гибкий бетон

В Сингапуре создано инновационное строительное вещество – гибкий бетон ConFlexPave. Его прочность сопоставима со стальными материалами, а гибкость в два раза превышает этот показатель обычной цементной конструкции. В состав гибкого бетона входит полимерное микроволокно. Оно, кроме гибкости, усиливает адгезию бетона с покрываемой поверхностью.

Это уже не просто бетон, а композитное вещество, в которое добавляют разные компоненты в зависимости от поставленных задач. Теперь бетонные композиты заменят обычные плиты на дорожном или аэродромном покрытии. Они легче и прочнее, что важно при строительстве мостов, домов и других высотных сооружений.

Первые виды гибких бетонов появились около десятка лет назад. Их принцип работы заключается в скольжении слоев стройматериала между собой. В то время как у традиционной смеси все компоненты просто твердеют и теряют эластичность. Поэтому у нового бетона нет деформаций, ведущих к медленному разрушению. У гибкого бетона есть один недостаток – цена. Стоимость его в три раза выше, чем у обычного изделия.

Читайте также: Деревянные обои для стен: виды, фото деревянных обоев в интерьере

Заметка! Выпускаемые спецдобавки для бетонных смесей ускоряют работу по кладке или стяжке, отделке наружных покрытий. Если раньше для выведения воздуха применялись различные механические уплотнители, то теперь его удаление происходит без участия людей или оборудования.

Самовосстанавливающийся бетон (самозалечивающийся эластичный)

Электронный научный журнал “ТРУДЫ ВИАМ”

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ
“ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ АВИАЦИОННЫХ МАТЕРИАЛОВ”
ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ

  • О Журнале
  • Редакционный совет
  • Правила направления, рецензирования и опубликования статей
  • Этические нормы
  • Открытый доступ к содержанию журнала
  • Свежий номер
  • Архив
  • Архив 1932-1994
  • Наши авторы
  • Контакты
Читайте также:  Бетон М400 - основные характеристики

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ
“ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ АВИАЦИОННЫХ МАТЕРИАЛОВ”
ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ

Самоисцеление бетона

Железобетон является самым широко используемым строительным материалом настоящего времени в силу многих достоинств, однако недостатки у этого материала тоже имеются. Один из наиболее существенных – это хрупкость. От времени и/или непогоды на бетонных поверхностях появляются трещины, и если их своевременно не заделать, то внутрь начинает проникать влага и, следовательно, будет ржаветь арматура, что критически опасно для устойчивости всей конструкции.

С проблемой хрупкости бетона борются различными методами – это и антикоррозионные присадки, и специальные покрытия стальных арматурных стержней, и добавки, усиливающие прочность бетонной смеси. Есть также целый арсенал средств для устранения уже образовавшихся трещин – стяжки, специальные составы, кевларовые полосы, и прочее, и прочее. Очевидным образом, на ремонт тратятся огромные деньги. И здесь наибольшую головную боль вызывают даже не столько обычные здания (все же многие из них находятся в частной собственности, и расходы ложатся на плечи их владельцев), но мосты и дороги, за которыми приходится следить за счет государственного бюджета и в условиях практически постоянного дефицита снова и снова изыскивать деньги на эту более чем затратную статью.

Таким образом, вряд ли будет преувеличением сказать, что в появлении новых более эффективных и менее дорогостоящих решений этой проблемы заинтересованы все. Или почти все. На данный момент внимание ученых всего мира приковано к реализации идеи “самозалечивающегося” бетона. Ведь если трещины будут зарастать “сами собой”, то денег на их заделывание не нужно будет тратить вообще. Как оказалось, добиться этого вполне возможно.

Одним из первых свой проект предложил профессор Мичиганского университета Виктор Ли. По его задумке в бетон следует интегрировать тончайшие нити сверхпрочной микрофибры, благодаря чему максимальная толщина трещин, которые могут образоваться в конструкции из такого бетона, будет не более 50 микрон (для сравнения – это тоньше человеческого волоса). За счет прочности материала края трещины дальше расходиться не будут, а такие миниатюрные отверстия вполне могут “залечиваться” самостоятельно. Для этого необходимо, чтобы внутри образовавшейся полости была цементная крошка, которая при взаимодействии с влагой из воздуха “разбухает”, заполняя эти самые мелкие повреждения. Подобный эффект можно назвать действенным только в случае действительно микроскопических трещин. Если размеры превысят несколько десятков микрон, то никакого чуда уже не произойдет. Кроме того, не все типы цемента имеют одинаково высокий “залечивающий эффект” (согласно некоторым исследованиям, ведущую позицию занимает портландцемент типа IV).

Стоимость бетона, укрепленного микрофиброй, по данным исследователя в 3 раза выше, чем обычного цемента. Но если учесть, что эти затраты при производстве строительных работ предстоит осуществить всего один раз и потом забыть о необходимости экстренного ремонта, такое предложение может оказаться выгодным в рамках достаточного количества задач.

Сейчас этот проект находится на стадии доработки и тестирования, но в промышленное использование поступил “гнущийся” бетон (менее технологичный вариант изначальной технологии, своего рода промежуточная ступень), который был успешно применен для строительства зданий в сейсмоопасных районах Японии (город Осака).

Еще одно решение предложили южнокорейские ученые из университета Йонсей. Они разработали покрытие в виде спрея, которое позволяет “залечивать” механические нарушения благодаря входящим в его состав микрокапсулам с полимером. Полимер при появлении трещины заполняет ее а под воздействием солнечного света образует твердое покрытие, не пропускающее воду.

Правда, такую технологию нельзя назвать такой уж инновационной, потому что существуют и другие системы, действующие по подобному принципу, когда на поверхность напыляется некое покрытие с микрокапсулами, содержащими “лечащее” вещество. Такое вещество при повреждении целостности поверхности вступает в контакт с определенным катализатором, после чего “закрывает” прорехи. Революционность корейского подхода заключается именно в использовании солнечного света вместо химических катализаторов, которые обычно имеют существенные ограничения по условиям применения или стоят слишком дорого.

Пожалуй, наиболее нашумевшей новинкой в сфере “самозалечивания” бетона стала разработка голландских ученых (во главе с Хэнком Йонкерсом) из Делфтского технологического университета и британских ученых из университета города Бат, которым практически одновременно удалось вживить в бетон микрокапсулы с бактериями, вырабатывающими известняк. Эта задача была трудной хотя бы потому, что бетон по умолчанию является сильнощелочной средой с высоким индексом pH, далеко не дружественной для выживания чего-либо. Приспособиться к этим условиям смогли лишь редкие алкалофильные виды бактерий, споры которых запечатываются в специальные капсулы вместе с необходимым питательным веществом (молочно-кислым кальцием). Выбранные опытным путем штаммы бактерий (например, bacilli megaterium) крайне живучи и, пребывая в бетоне, могут годами оставаться в своего рода “спящем” состоянии, начиная свою активную жизнедеятельность только при попадании в капсулу кислорода или воды, что, собственно говоря, внутри бетона может произойти только в случае образование трещины.

Такой материал уже имеет демонстрационные образцы и предполагается, что наиболее целесообразным будет его использование при починке мостов, сводов туннелей, и подземных хранилищ отходов и опасных веществ – одним словом, тех мест, где опасно, нежелательно и труднодостижимо непосредственное присутствие рабочих.

В то время, как поклонники научных прорывов такого рода бурно радуются, вопросов к разработкам у скептически настроенных критиков тоже вполне достаточно. Безопасно ли соседство с бактериями? Насколько долговечны такие покрытия? Раз в сколько лет их нужно будет обновлять? Какие могут быть гарантии, что технология точно работает? Пока разработка еще не вышла из лабораторий сложно сделать какие-то выводы о том, как поведет себя материал в реальном применении, и все эти вопросы остаются на данный момент открытыми. Из-за своей новизны самозалечивающийся бетон стоит крайне дорого и на коммерческий рынок поступит явно не в этом году, так что время присмотреться к новинке у нас есть.

С проблемой хрупкости бетона борются различными методами – это и антикоррозионные присадки, и специальные покрытия стальных арматурных стержней, и добавки, усиливающие прочность бетонной смеси. Есть также целый арсенал средств для устранения уже образовавшихся трещин – стяжки, специальные составы, кевларовые полосы, и прочее, и прочее. Очевидным образом, на ремонт тратятся огромные деньги. И здесь наибольшую головную боль вызывают даже не столько обычные здания (все же многие из них находятся в частной собственности, и расходы ложатся на плечи их владельцев), но мосты и дороги, за которыми приходится следить за счет государственного бюджета и в условиях практически постоянного дефицита снова и снова изыскивать деньги на эту более чем затратную статью.

Обзор замедлителей схватывания бетонного раствора

При большом объеме работ неизбежно возникает проблема, связанная с быстрым застыванием состава. Стыки участков, залитых ранее и покрытых свежим раствором (рабочие швы), являются слабым местом готовой конструкции, требуют трудоемкой обработки, иначе невозможно забетонировать надежно. Идеальный вариант — когда смесь заливают непрерывно или с небольшими интервалами, чтобы она не успевала застыть. Для этого добавляют специальные компоненты. Принцип их действия заключается в снижении скорости соединения цемента с водой (гидратации и гидролиза).

Преимущества и недостатки применения добавок

  • снижение затрат времени и энергии на вибрирование;
  • сохранение удобоукладываемости;
  • возможность бетонирования при температуре воздуха до +30°C за счет увеличения срока сохранения подвижности;
  • получение высокоподвижной смеси;
  • снижение расхода цемента;
  • исключение расслаиваемости;
  • снижение усадки;
  • повышение прочности;
  • улучшение поверхности готовой конструкции;
  • более комфортные условия работы за счет уменьшения шума от вибрации.

К недостаткам относят непредсказуемость влияния этих компонентов на характеристики. Рекомендуется определить экспериментально на небольшой порции прочность и другие свойства раствора после внесения добавки.


Помимо патоки или сыворотки применяют костный клей и крахмал.

Ссылка на основную публикацию