Реле электротепловое

Тепловые реле – устройство, принцип действия, технические характеристики

Тепловые реле – это электрические аппараты, предназначенные для защиты электродвигателей от токовой перегрузки. Наиболее распространенные типы тепловых реле – ТРП, ТРН, РТЛ и РТТ.

Принцип действия тепловых реле

Долговечность энергетического оборудования в значительной степени зависит от перегрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длительности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования. Эта зависимость представлена на рисунке (кривая 1).

При номинальном токе допустимая длительность его протекания равна бесконечности. Протекание тока, большего, чем номинальный, приводит к дополнительному повышению температуры и дополнительному старению изоляции. Поэтому чем больше перегрузка, тем кратковременнее она допустима. Кривая 1 на рисунке устанавливается исходя из требуемой продолжительности жизни оборудования. Чем короче его жизнь, тем большие перегрузки допустимы.

Время-токовые характеристики теплового реле и защищаемого объекта

При идеальной защите объекта зависимость tср (I) для теплового реле должна идти немного ни-же кривой для объекта.

Для защиты от перегрузок, наиболее широкое распространение получили тепловые реле с биметаллической пластиной.

Биметаллическая пластина теплового реле состоит из двух пластин, одна из которых имеет больший температурный коэффициент расширения, другая — меньший. В месте прилегания друг к другу пластины жестко скреплены либо за счет проката в горячем состоянии, либо за счет сварки. Если закрепить неподвижно такую пластину и нагреть, то произойдет изгиб пластины в сторону материала с меньшим. Именно это явление используется в тепловых реле.

Широкое распространение в тепловых реле получили материалы инвар (малое значение a) и немагнитная или хромоникелевая сталь (большое значение a).

Нагрев биметаллического элемента теплового реле может производиться за счет тепла, выделяемого в пластине током нагрузки. Очень часто нагрев биметалла производится от специального нагревателя, по которому протекает ток нагрузки. Лучшие характеристики получаются при комбинированном нагреве, когда пластина нагревается и за счет тепла, выделяемого током, проходящим через биметалл, и за счет тепла, выделяемого специальным нагревателем, также обтекаемым током нагрузки.

Прогибаясь, биметаллическая пластина своим свободным концом воздействует на контактную систему теплового реле.

Время-токовые характеристики теплового реле

Основной характеристикой теплового реле является зависимость времени срабатывания от тока нагрузки (времятоковая характеристика). В общем случае до начала перегрузки через реле протекает ток Iо, который нагревает пластину до температуры qо.

При проверке времятоковых характеристик тепловых реле следует учитывать, из какого состояния (холодного или перегретого) происходит срабатывание реле.

При проверке тепловых реле надо иметь в виду, что нагревательные элементы тепловых реле термически неустойчивы при токах короткого замыкания.

Выбор тепловых реле

Номинальный ток теплового реле выбирают исходя из номинальной нагрузки электродвигателя. Выбранный ток теплового реле составляет (1,2 – 1,3) номинального значения тока электродвигателя (тока нагрузки), т. е.тепловое реле срабатывает при 20- 30% перегрузке в течении 20 минут.

Постоянная времени нагрева электродвигателя зависит от длительности токовой перегрузки. При кратковременной перегрузке в нагреве участвует только обмотка электродвигателя и постоянная нагрева 5 – 10 минут. При длительной перегрузке в нагреве участвует вся масса электродвигателя и постоянна нагрева 40-60 минут. Поэтому применение тепловых реле целесообразно лишь тогда, когда длительность включения больше 30 минут.

Влияние температуры окружающей среды на работу теплового реле

Нагрев биметаллической пластинки теплового реле зависит от температуры окружающей среды, поэтому с ростом температуры окружающей среды ток срабатывания реле уменьшается.

При температуре, сильно отличающейся от номинальной, необходимо либо проводить дополнительную (плавную) регулировку теплового реле, либо подбирать нагревательный элемент с учетом реальной температуры окружающей среды.

Для того чтобы температура окружающей среды меньше влияла на ток срабатывания теплового реле, необходимо, чтобы температура срабатывания выбиралась возможно больше.

Для правильной работы тепловой защиты реле желательно располагать в том же помещении, что и защищаемый объект. Нельзя располагать реле вблизи концентрированных источников тепла — нагревательных печей, систем отопления и т. д. В настоящее время выпускаются реле с температурной компенсацией (серии ТРН).

Конструкция тепловых реле

Прогиб биметаллической пластины происходит медленно. Если с пластиной непосредственно связать подвижный контакт, то малая скорость его движения, не сможет обеспечить гашение дуги, возникающей при отключении цепи. Поэтому пластина действует на контакт через ускоряющее устройство. Наиболее совершенным является «прыгающий» контакт.

В обесточенном состоянии пружина 1 создает момент относительно точки 0, замыкающий контакты 2. Биметаллическая пластина 3 при нагреве изгибается вправо, положение пружины изменяется. Она создает момент, размыкающий контакты 2 за время, обеспечивающее надежное гашение дуги. Современные контакторы и пускатели комплектуются с тепловыми реле ТРП (одно-фазное) и ТРН (двухфазное).

Тепловые реле ТРП

Тепловые токовые однополюсные реле серии ТРП с номинальными токами тепловых элементов от 1 до 600 А предназначены главным образом для защиты от недопустимых перегрузок трехфазных асинхронных электродвигателей, работающих от сети с номинальным напряжением до 500 В при частоте 50 и 60 Гц. Тепловые реле ТРП на токи до 150 А применяют в сетях постоянного тока с номинальным напряжением до 440 В.

Устройство теплового реле типа ТРП

Биметаллическая пластина теплового реле ТРП имеет комбинированную систему нагрева. Пластина нагревается как за счет нагревателя, так и за счет прохождения тока через саму пластину. При прогибе конец биметаллической пластины воздействует на прыгающий контактный мостик.

Тепловое реле ТРП позволяет иметь плавную регулировку тока срабатывания в пределах (±25% номинального тока уставки). Эта регулировка осуществляется ручкой, меняющей первоначальную деформацию пластины. Такая регулировка позволяет резко снизить число потребных вариантов нагревателя.

Возврат реле ТРП в исходное положение после срабатывания производится кнопкой. Возможно исполнение и с самовозвратом после остывания биметалла.

Высокая температура срабатывания (выше 200°С) уменьшает зависимость работы реле от температуры окружающей среды.

Уставка теплового реле ТРП меняется на 5% при изменении температуры окружающей среды на КУС.

Высокая ударо- и вибростойкость теплового реле ТРП позволяют использовать его в самых тяжелых условиях.

Тепловые реле РТЛ

Реле тепловое РТЛ предназначено для обеспечения защиты электродвигателей от токовых перегрузок недопустимой продолжительности. Они также обеспечивают защиту от не симметрии токов в фазах и от выпадения одной из фаз. Выпускаются электротепловые реле РТЛ с диапазоном тока от 0.1 до 86 А.

Тепловые реле РТЛ могут устанавливаться как непосредственно на пускатели ПМЛ, так и отдельно от пускателей (в последнем случае они должны быть снабжены клеммниками КРЛ). Разработаны и выпускаются реле РТЛ и клеммники КРЛ которые имеют степень защиты ІР20 и могут устанавливаться на стандартную рейку. Номинальный ток контактов равен 10 А.

Тепловые реле РТТ

Реле топловые РТТ предназначены для защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором от перегрузок недопустимой продолжительности, в том числе возникающих при выпадении одной из фаз, а также от несимметрии в фазах.

Реле РТТ предназначены для применения в качестве комплектующих изделий в схемах управления электроприводами, а также для встройки в магнитные пускатели серии ПМА в целях переменного тока напряжением 660В частотой 50 или 60Гц, в целях постоянного тока напряжением 440В.

Тепловая защита электродвигателя. Электротепловое реле.

17 Дек 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

Читайте также:  Установка электросчетчика

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Тепловое реле ртг, ртл, рти, трн, ртэ — принцип работы, где купить

Электрическое устройство защиты, разработанное для отключения машины, механизма или какой-либо установки или от питания для предохранения его от повреждений, называется электротепловое реле. Рассмотрим принцип действия, характеристики и устройство, которыми обладает тепловое реле тртп, и как подобрать и где купить нужную модель.

Принцип работы

Во время перегрузки реле тепловое типа РТТ 211, 111, 5, 321, и РТТ 141 включает защиту при помощи тепловых чувствительных элементов или магнитного пускателя пмл (пм-1-12). Эти датчики способны реагировать на состояние текущего защищенного компонента в процессе его эксплуатации.

Схема: тепловое реле ТРТ

Протекание тока через электрическое устройство генерирует тепло. Увеличение тока приводит к пропорциональному увеличению количества тепла. Протекание тока через электрический прибор является продуктом нагрузки, которой подвергается определенный аппарат. Если нагрузка возрастает до точки, которая превышает расчетные характеристики прибора, он будет перегреваться и, в конечном счете, поломается.

Принцип работы теплового реле

Тепловые реле предназначены для предотвращения повреждения или разрушения электрических машин, и срабатывает, реагируя на увеличение тока, индуцированного температурами. При повышении температуры выше нормы, реле отключит основной источник питания и предотвратит повреждение оборудования. Это отклонение достигается либо через механическую блокировку между реле и основным источником питания, либо через электрическую. Чувствительным элементом в обоих случаях выступает би-металлическая полоса.

Видео: тепловое реле

Би-металлическая полоса в тепловом реле состоит из двух разнородных металлов слитых вместе. Различные характеристики металла означают, что они нагреваются с разной скоростью, в результате чего полоса сгибается. Этот изгиб активирует отключение при перегреве. Электронное тепловое реле перегрузки использует датчик или зонд, чтобы «прочитать» ток, генерируемый температуры. Затем микропроцессор предписывает, когда схема будет открывать и перерезать основные поставки в зависимости от заданных параметров.

Биметаллические полосы могут быть нагреты непосредственно или косвенно. В первом случае ток проходит непосредственно через биметалл, во втором через изолированный слой обмотки вокруг полосы. Изоляция вызывает некоторое замедление потока тепла, инерция косвенно нагревает термореле сильнее при более высоких токах, чем при их непосредственном контакте, и пускатель пма задерживает сигнал. Часто оба этих принципа объединены.

Реле тепловое (РТ) электродвигателя и компрессора работает на принципе изменения температур. Из-за этого нужно очень внимательно следить за тем, чтобы температура в помещении, где находится прибор, не поднималась выше 30 градусов.

Конструкция реле

Реле цепи управления состоит из термочувствительного элемента, и множества контактных точек. Цепь управления для защищенного компьютера проходит через контакты реле. Если машина перегружена на текущих уровнях, тепловой датчик реле переключается к тепловым реле перегрузки, от которых, в свою очередь, поступает сигнал к основному источнику питания машины.

Термин «чувствительный элемент» описывает количество отдельных контуров, управляемых переключателем. Количество проводов определяет количество контактов испарителя. Переключатели реле тепла обычно имеют от одного до четырех полюсов – стинол (stinol), , .

Спусковой механизм приводит в действие вспомогательный переключатель реле тепловое авв (abb), который разрывает цепи катушки, ведущие на контактор двигателя кми. В этот момент индикаторный автомат показывает: «Сработало».

Схема подключения магнитного пускателя

Виды тепловых реле

  1. Тепловое биметаллические реле – ртл (ksd, lrf, lrd, lr, iek и ptlr). Их принцип работы и конструкция описывается выше, данные устройства являются наиболее распространенными.
  2. Твердотельное реле представляет собой электронное тепловое устройство (шнайдер – schneider electric, siemens), которое не имеет движущихся или механических частей. Вместо этого, тепловое РТР и РТИ ИЭК реле вычисляет средние температуры двигателя путем мониторинга его пускового и рабочего тока. Поскольку они способны противостоять искрам, они могут быть использованы во взрывоопасных средах. Тепловые твердотельные реле, как правило, быстрее по времени реакции, чем электромеханические, а также легче регулируются.
  3. Реле контроля температуры – РТК, nr, tf, erb, и du, предназначено непосредственно чтобы контролировать температуру двигателя с использованием термистора или тепловое устройство сопротивления (RTD и ртлу), зонд, который встроен в обмотку холодильника (атлант, таdu, ). Когда номинальная температура зонда будет достигнута, его сопротивление резко возрастает.
  4. Реле плавления сплава состоит из нагревательной обмотки, эвтектического сплава, и механического механизма разрыва цепи. Использование: нагреватель катушки и тепловое реле (РТЭ, в частности, трн 10 и ухл), измеряет температуру двигателя путем мониторинга количества тока, схема применяется в стиральной машине, автомобилях (УАЗ – до 3 кВт).

Устройство теплового реле ТРН

Как выбрать реле

Покупатели могут выбрать и установить реле, учитывая его область применения и наличие определенных механизмов (функций):

  1. Тепловое однофазное токовое реле с автоматическим сбросом вернется в исходное положение «закрыто» по истечении определенного периода времени. Если двигатель все еще перегружен после сброса, реле сработает снова.
  2. Реле с компенсацией температуры окружающей среды трв эффективно работает в широком диапазоне температур окружающей среды.
  3. Некоторые реле имеют различные степени контроля фаз. Эти механизмы могут проверить двигатель на обрыв фаз с контактора, разворот, или дисбаланс. При любом этапе обнаружения проблем, реле обеспечивает прекращения подачи электроэнергии к двигателю. Дисбаланс фаз, в частности, может вызвать опасные колебания напряжения или тока двигателя, что приведет к его повреждению.
  4. Недогрузки относится к способности реле обнаружить уменьшение тока в результате разгрузки. Это может произойти, если, например, насос начинает работать всухую. Эти реле предназначены для обнаружения этих различий и поездки, как если бы обнаружение перегрузки.
  5. Реле с визуальными индикаторами – это технические продукты, которые имеют светоизлучающие диоды (СИД) или сигнализирующие датчики состоянии и подключения.

Средний прай-лист (цена) на реле тепловое – от 500 рублей до нескольких тысяч. Все зависит от того, кто производитель, пропускной уровень и максимальные показатели ампер. Поэтому очень внимательно читайте описание, его предоставляют в любом каталоге и магазине, чтобы не купить устройство слишком слабое для Ваших потребностей. Особенно важен ГОСТ и паспорт, там можно найти всю интересующую информацию. В некоторых городах (Екатеринбург, Москва, Минск и практически по всей Украине), можно купить ТР прямо с завода по сниженной цене.

Перед тем, как подключить реле, обязательно просмотрите подробную инструкцию, по возможности воспользуйтесь услугами профессионала (если подобного опыта у Вас не имеется). Ремонт осуществляется только при наличии специального оборудования и необходимых знаний, в противном случае настоятельно рекомендуем обратиться в сервисный центр.

Тепловое реле: принцип работы, виды, схема подключения + регулировка и маркировка

Долговечность и надежность в эксплуатации любой установки с электрическим двигателем зависит от различных факторов. Однако в значительной мере на срок службы мотора влияют токовые перегрузки. Чтобы их предупредить подключают тепловое реле, защищающее основной рабочий орган электромашины.

Мы расскажем, как подобрать устройство, предсказывающее назревание аварийных ситуаций с превышением максимально допустимых показателей тока. В представленной нами статье описан принцип действия, приведены разновидности и их характеристики. Даны советы по подключению и грамотной настройке.

Зачем нужны защитные аппараты?

Даже если электропривод грамотно спроектирован и используется без нарушения базовых правил эксплуатации, всегда остается вероятность возникновения неисправностей.

К аварийным режимам работы относят однофазные и многофазные КЗ, тепловые перегрузки электрооборудования, заклинивание ротора и разрушение подшипникового узла, обрыв фазы.

Функционируя в режиме повышенных нагрузок, электрический двигатель расходует огромное количество электроэнергии. А при регулярном превышении показателей номинального напряжения оборудование интенсивно нагревается.

В результате быстро изнашивается изоляция, что приводит к значительному снижению эксплуатационного срока электромеханических установок. Чтобы исключить подобные ситуации, в цепи электрического тока подключают реле тепловой защиты. Их основная функция – обеспечить нормальный режим работы потребителей.

Они отключают мотор с определенной выдержкой времени, а в некоторых случаях – мгновенно, чтобы предотвратить разрушение изоляции или повреждение отдельных частей электроустановки.

С целью не допустить понижение сопротивления изоляции задействуют устройства защитного отключения, ну а если поставлена задача предотвратить нарушение охлаждения, подключают специальные аппараты встроенной тепловой защиты.

Устройство и принцип работы ТР

Конструктивно стандартное электротепловое реле представляет собой небольшой аппарат, который состоит из чувствительной биметаллической пластины, нагревательной спирали, рычажно-пружинной системы и электрических контактов.

Биметаллическую пластину изготовляют из двух разнородных металлов, как правило, инвара и хромоникелевой стали, прочно соединенных вместе в процессе сварки. Один металл обладает большим температурным коэффициентом расширения, чем другой, поэтому нагреваются они с разной скоростью.

При токовой перегрузке незафиксированная часть пластины прогибается к материалу с меньшим значением коэффициента теплового расширения. Это оказывает силовое воздействие на систему контактов в защитном устройстве и активирует отключение электроустановки при перегреве.

В большинстве моделей механических тепловых реле есть две группы контактов. Одна пара – нормально разомкнутые, другая – замкнутые постоянно. Когда срабатывает защитное устройство, в контактах меняется состояние. Первые замыкаются, а вторые становятся разомкнутыми.

Ток детектирует интегрированный трансформатор, после чего электроника обрабатывает полученные данные. Если значение тока в настоящий момент времени больше, чем уставка, импульс мгновенно передается прямо на выключатель.

Размыкая внешний контактор, реле с электронным механизмом блокирует нагрузку. Само тепловое реле для электродвигателя устанавливается на контактор.

Биметаллическая пластина может быть нагрета непосредственно – за счет воздействия пикового тока нагрузки на металлическую полосу или косвенно, при помощи отдельного термоэлемента. Нередко эти принципы объединяют в одном аппарате тепловой защиты. При комбинированном нагреве прибор имеет лучшие рабочие характеристики.

Базовые характеристики токового реле

Основной характеристикой коммутатора тепловой защиты является выраженная зависимость времени срабатывания от протекающего по нему тока — чем больше величина, тем быстрее он сработает. Это свидетельствует об определенной инерционности релейного элемента.

Направленное перемещение частиц-носителей заряда через любой электроприбор, циркуляционный насос и электрокотел, генерирует тепло. При номинальном токе его допустимая длительность стремится к бесконечности.

А при значениях, превышающих номинальные показатели, в оборудовании повышается температура, что приводит к преждевременному износу изоляции.

Номинальная нагрузка самого мотора – ключевой фактор, определяющий выбор прибора. Показатель в интервале 1,2-1,3 обозначает успешное срабатывание при токовой перегрузке в 30% на временном отрезке в 1200 секунд.

Продолжительность перегрузки может негативно сказаться на состоянии электрооборудования — при кратковременном воздействии в 5-10 минут нагревается только обмотка мотора, которая имеет небольшую массу. А при длительных нагревается весь двигатель, что чревато серьезными поломками. Или вовсе может потребоваться замена сгоревшего оборудования новым.

Чтобы максимально уберечь объект от перегрузки, следует конкретно под него использовать реле тепловой защиты, время срабатывания которого будет соответствовать максимально допустимым показателям перегрузки конкретного электродвигателя.

На практике собирать реле контроля напряжения под каждый тип мотора нецелесообразно. Один релейный элемент задействуют для защиты двигателей различного конструктивного исполнения. При этом гарантировать надежную защиту в полном рабочем интервале, ограниченном минимальной и максимальной нагрузкой, невозможно.

Поэтому нет крайней необходимости в том, чтобы защитное устройство реагировало на каждое, даже незначительное повышение тока. Реле должно отключать электродвигатель только в тех случаях, когда есть опасность быстрого износа изоляционного слоя.

Виды реле тепловой защиты

Существует несколько видов реле для защиты электрических двигателей от обрыва фаз и токовых перегрузок. Все они отличаются конструкционными особенностями, типом используемых МП и применением в разных моторах.

ТРП. Однополюсный коммутационный аппарат с комбинированной системой нагрева. Предназначен для защиты асинхронных трехфазных электромоторов от токовых перегрузок. Применяется ТРП в электросетях постоянного тока с базисным напряжением в условиях нормальной работы не больше 440 В. Отличается устойчивостью к вибрациям и ударам.

РТЛ. Обеспечивают двигателям защиту в таких случаях:

  • при выпадении одной из трех фаз;
  • асимметрии токов и перегрузок;
  • затянутого пуска;
  • заклинивания исполнительного механизма.

Их можно устанавливать с клеммами КРЛ отдельно от магнитных пускателей или монтировать непосредственно на ПМЛ. Устанавливаются на рейках стандартного типа, класс защиты – IP20.

РТТ. Защищают асинхронные трехфазные машины с короткозамкнутым ротором от затянутого старта механизма, длительных перегрузок и асимметрии, то есть перекоса фаз.

ТРН. Двухфазные коммутаторы, которые контролируют пуск электроустановки и режим работы мотора. Практически не зависят от температуры внешней среды, имеют только систему ручного возврата контактов в начальное состояние. Их можно использовать в сетях постоянного тока.

Читайте также:  Светодиодные лампы

РТИ. Электрические переключающие аппараты с постоянным, хоть и небольшим потреблением электроэнергии. Монтируются на контакторах серии КМИ. Работают вместе с предохранителями/автоматическими выключателями.

Твердотельные токовые реле. Представляют собой небольшие электронные устройства на три фазы, в конструкции которых нет подвижных частей.

Функционируют по принципу вычисления средних значений температур двигателя, осуществляя для этого постоянный мониторинг рабочего и пускового тока. Отличаются невосприимчивостью к изменениям в окружающей среде, а потому используются во взрывоопасных зонах.

РТК. Пусковые коммутаторы для контроля температуры в корпусе электрооборудования. Используются в схемах автоматики, где тепловые реле выступают в качестве комплектующих деталей.

Важно помнить, что ни один вид из выше рассмотренных приборов не является пригодным для защиты цепей от короткого замыкания.

Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке.

Электрооборудование может перегореть еще до начала срабатывания реле. Для комплексной защиты их нужно дополнять предохранителями или компактными автоматическими выключателями модульной конструкции.

Подключение, регулировка и маркировка

Коммутационный прибор перегрузки, в отличие от электрического автомата, не разрывает силовую цепь непосредственно, а лишь подает сигнал на временное отключение объекта при аварийном режиме. Нормально включенный контакт у него работает как кнопка «стоп» контактора и подсоединяется по последовательной схеме.

Схема подключения устройств

В конструкции реле не нужно повторять абсолютно все функции силовых контактов при успешном срабатывании, поскольку оно подключается непосредственно к МП. Такое исполнение позволяет существенно сэкономить материалы для силовых контактов. Намного легче в управляющей цепи подключить малый ток, чем сразу отключать три фазы с большим.

Во многих схемах подключения теплового реле к объекту используют постоянно замкнутый контакт. Его последовательно соединяют с клавишей «стоп» пульта управления и обозначают НЗ – нормально замкнутый, или NC – normal connected.

Разомкнутый контакт при такой схеме может быть использован для инициализации срабатывания тепловой защиты. Схемы подсоединения электромоторов, в которых подключено реле тепловой защиты, могут значительно отличаться в зависимости от наличия дополнительных устройств или технических особенностей.

Это обеспечит надежную защиту от перегрузок электрооборудования. В случае недопустимого превышения предельных значений тока релейный элемент разомкнет цепь, моментально отключая МП и двигатель от электропитания.

Подключение и установку теплового реле, как правило, производят вместе с магнитным пускателем, предназначенным для коммутации и запуска электрического привода. Однако есть виды, которые монтируют на DIN-рейку или специальную панель.

Тонкости регулировки релейных элементов

Одним из главных требований к устройствам защиты электродвигателей является четкое действие аппаратов при возникновении аварийных режимов работы мотора. Очень важно правильно его подобрать и отрегулировать настройки, поскольку ложные срабатывания абсолютно недопустимы.

Среди преимуществ использования токовых элементов защиты также следует отметить довольно высокую скорость и широкий диапазон срабатывания, удобство монтажа. Чтобы обеспечить своевременное отключение электромотора при перегрузке, реле тепловой защиты необходимо настраивать на специальной платформе/стенде.

В таком случае исключается неточность из-за естественного неравномерного разброса номинальных токов в НЭ. Для проверки защитного устройства на стенде применяется метод фиктивных нагрузок.

Через термоэлемент пропускают электрический ток пониженного напряжения, чтобы смоделировать реальную тепловую нагрузку. После этого по таймеру безошибочно определяют точное время срабатывания.

Настраивая базовые параметры, следует стремиться к таким показателям:

  • при 1,5-кратном токе устройство должно отключать двигатель через 150 с;
  • при 5…6-кратном токе оно должно отключать мотор через 10 с.

Если время срабатывания не соответствует норме, релейный элемент необходимо отрегулировать посредством контрольного винта.

Это делают в тех случаях, когда значения номинального тока НЭ и мотора отличаются, а также если температура окружающей среды ниже номинальной (+40 ºC) более, чем на 10 градусов по шкале Цельсия.

Ток срабатывания электротеплового коммутатора уменьшается с повышением температуры вокруг рассматриваемого объекта, так как нагрев биметаллической полосы зависит от этого параметра. При существенных отличиях необходимо дополнительно отрегулировать ТР или подобрать более подходящий термоэлемент.

Резкие колебания температурных показателей сильно влияют на работоспособность токового реле. Поэтому очень важно выбирать НЭ, способный эффективно выполнять основные функции с учетом реальных значений.

К реле с температурной компенсацией эти ограничения не относятся. Токовую уставку защитного аппарата можно регулировать в диапазоне 0,75-1,25х от значений номинального тока термоэлемента. Настройку выполняют поэтапно.

В первую очередь вычисляют поправку E1 без температурной компенсации:

  • Iном – номинальный ток нагрузки двигателя,
  • Iнэ – номинальный ток рабочего нагревательного элемента в реле,
  • c – цена деления шкалы, то есть эксцентрика (c=0,055 для защищенных пускателей, c=0,05 для открытых).

Следующий шаг – определение поправки E2 на температуру окружающего воздуха:

Где ta (ambient temperature) – температура внешней среды в градусах Цельсия.

Последний этап – нахождение суммарной поправки:

Суммарная поправка E может быть со знаком «+» или «-». Если в результате получается дробная величина, ее обязательно нужно округлить до целого в меньшую/большую по модулю сторону, в зависимости от характера токовой нагрузки.

Чтобы настроить реле, эксцентрик переводят на полученное значение суммарной поправки. Высокая температура срабатывания уменьшает зависимость работы защитного аппарата от внешних показателей.

Регулировка этих показателей осуществляется специальным рычагом, перемещение которого изменяет первоначальный изгиб биметаллической пластины. Настройка тока срабатывания в более широком диапазоне осуществляется заменой термоэлементов.

В современных коммутационных аппаратах защиты от перегрузки есть тестовая кнопка, которая позволяет проверить исправность устройства без специального стенда. Также есть клавиша для сброса всех настроек. Обнулить их можно автоматически или вручную. Кроме того, изделие комплектуют индикатором текущего состояния электроприбора.

Маркировка электротепловых реле

Защитные аппараты подбирают в зависимости от величины мощности электрического двигателя. Основная часть ключевых характеристик скрыта в условном обозначении.

Акцентировать внимание следует на отдельных моментах:

  1. Диапазон значений токов уставки (указан в скобках) у разных производителей отличается минимально.
  2. Буквенные обозначения конкретного типа исполнения могут различаться.
  3. Климатическое исполнение нередко подается в виде диапазона. К примеру, УХЛ3О4 нужно читать так: УХЛ3-О4.

Сегодня можно купить самые разные вариации прибора: реле для переменного и постоянного тока, моностабильные и бистабильные, аппараты с замедлением при включении/отключении, реле тепловой защиты с ускоряющими элементами, ТР без удерживающей обмотки, с одной обмоткой или несколькими.

Эти параметры не всегда отображены в маркировке устройств, но обязательно должны быть указаны в техпаспорте электротехнических изделий.

С устройством, разновидностями и маркировкой электромагнитного реле ознакомит следующая статья, с которой мы рекомендуем ознакомиться.

Выводы и полезное видео по теме

Устройство и принцип функционирования токового реле для эффективной защиты электродвигателя на примере устройства РТТ 32П:

Правильная защита от перегрузки и обрыва фаз – залог длительной безотказной работы электрического мотора. Видео о том, как реагирует релейный элемент в случае нештатной работы механизма:

Как подсоединить устройство тепловой защиты к МП, принципиальные схемы электротеплового реле:

Реле тепловой защиты от перегрузок – обязательный функциональный элемент любой системы управления электроприводом. Оно реагирует на ток, который проходит на двигатель, и активируется, когда температура электромеханической установки достигает предельных значений. Это дает возможность максимально продлить срок эксплуатации экологически безопасных электродвигателей.

Пишите, пожалуйста, комментарии в находящемся ниже блоке. Расскажите, как вы выбирали и настраивали тепловое реле для собственного электромотора. Делитесь полезными сведениями, задавайте вопросы, размещайте фотоснимки по теме статьи.

Тепловые реле. Виды и устройство. Работа и применение

Тепловые реле являются электрическими устройствами, предотвращающими нагревание различных электрических потребителей от критических показателей температуры. При повышенной нагрузке электродвигатель расходует значительное количество электрической энергии, которая может намного превышать нормативные данные для электродвигателя.

В результате перегрузки в цепи электрического тока повышается температура, которая приводит чаще всего к неисправностям и аварии. Для исключения такой ситуации в цепи подключают вспомогательные специальные устройства, которые отключают электроэнергию при возникновении перегрузки или аварии. Такие приборы называют термореле или тепловые реле. Основной функцией такого защитного реле является обеспечение нормального рабочего режима потребителя.

Устройство и виды

Существует несколько разновидностей тепловых реле, каждая из которых имеет свои особенности конструкции и применение. Рассмотрим основные виды тепловых реле.

РТЛ – 3-фазные тепловые реле, которые служат для обеспечения защиты электромоторов от перегрузки, заклинивания ротора, затяжного пуска, перекоса фаз. Реле фиксируются на клеммы пускателя ПМЛ. Реле также может функционировать как самостоятельное устройство защиты с клеммами КРЛ.

РТТ – реле трехфазное, служит для обеспечения защиты короткозамкнутых моторов от токовой перегрузки, затяжного пуска, заклинивания двигателя и других подобных аварийных режимов. Конструкция реле этого вида позволяет закрепить его на корпус магнитного пускателя марки ПМЕ и ПМА, либо в виде самостоятельного прибора на специально предназначенной панели.

РТИ – такие трехфазные реле предохраняют электрический двигатель от перегрузки, фазного перекоса, заклинивания и тому подобных тяжелых режимов. Крепление такого вида реле осуществляется на корпус пускателей КМИ и КМТ.

ТРН – 2-фазный вариант теплового реле, осуществляет контроль запуска и работы устройств, оснащен механизмом ручного возврата контактов и исходное состояние, температура внешней среды не влияет на функционирование реле.

Твердотельное реле на три фазы, в котором отсутствуют подвижные элементы, невосприимчиво к внешней среде, используется в местах с наличием опасности взрыва, обеспечивает защиту от таких же факторов, как и вышеописанные конструкции реле.

РТК – температура контролируется с помощью щупа, находящегося в корпусе электроустройства. Тепловое реле осуществляет контроль одного параметра.

РТЭ – это термореле плавления сплава, состоящее из проводника, выполненного из специального сплава, который способен плавиться при определенной температуре, разрывая тем самым электрическую цепь. Это реле встраивается в конструкцию устройства.

Принцип действия на примере конструкции реле РТТ-32П

Это реле предназначено для защиты электрических цепей от токов перегрузки. Реле третьей величины на номинальный ток 160 ампер.

Исполнение для комплектации с пускателями ПМА-4000, 5000, 6000 с переключающим контактом, пониженной инерционности. Предельно допустимый номинальный ток несрабатывания 100 ампер.

Реле такой конструкции работают следующим образом. Силовые клеммы включены последовательно в цепь каждой фазы. Токоведущие шины рассчитаны на длительный номинальный ток несрабатывания. При прохождении тока перегрузки по одной из фаз повышается температура шины и передается через нагревательные пластины к биметаллической пластине, которая нагреваясь, изгибается, воздействуя на планку толкателя.

Время срабатывания при шестикратном номинальном токе несрабатывания от 6 до 14 секунд. При этом необходимый ход планки от 1,5 до 2 мм. Планка-толкатель воздействует в свою очередь на рычаг сброса защелки. Защелка, поворачиваясь, освобождает подвижные контакты, которые под действием собственной пружины переключаются, размыкая цепь управления и замыкая цепь сигнализации.

После устранения причины повышенного тока можно повторно включить реле с помощью кнопки и возвратного рычага. При этом подвижные контакты зафиксируются подпружиненной защелкой.

Можно изменить номинальный ток несрабатывания в большую или меньшую сторону на 15 ампер. При этом эксцентриком смещается ось рычага сброса защелки, тем самым увеличивая или уменьшая время срабатывания реле.

Особенности теплового реле

В отличие от электрического автомата тепловое реле не разрывает силовые цепи, а только отключает цепь управления магнитного пускателя. Нормально включенный контакт теплового реле работает подобно кнопке «стоп» пускателя, и соединяется с ней по последовательной схеме.

В конструкции термореле нет необходимости повторять функции силовых контактов при его срабатывании, так как реле подключается непосредственно к магнитному пускателю. При таком исполнении схемы достигается значительная экономия материалов для силовых групп контактов. Намного проще подключать малый ток в управляющей цепи, чем отключать три фазы с большим силовым током.

При подключении необходимо знать, что тепловые реле не расцепляют силовую цепь непосредственно, а только подают сигнал на ее отключение при аварийном режиме. Чаще всего в термореле имеется две пары контактов. Одни из них постоянно замкнутые, а другие нормально разомкнутые. При сработке термореле, эти контакты меняются между собой состоянием, то есть, первые контакты становятся разомкнутыми, а вторые замыкаются.

Характеристики реле
Тепловые реле следует выбирать, путем выбора характеристик этого устройства по нагрузке и условиям работы электромотора или другого потребителя электроэнергии:
  • Номинальный ток.
  • Граница регулировки тока сработки.
  • Силовое напряжение.
  • Число и вид дополнительных контактов управления.
  • Мощность при включении управляющих контактов.
  • Граница срабатывания.
  • Чувствительность к перекосу фаз.
  • Класс отключения.
Схема подключения

Во многих схемах при подключении термореле к пускателю применяется постоянно замкнутый контакт, работающий последовательно с кнопкой «стоп» на управляющем пульте. Этот контакт маркируется буквами NC или НЗ.

Нормально включенный контакт при такой схеме может применяться для подключения сигнализации о действии защиты электромотора. В более серьезных усложненных схемах автоматического управления этот контакт может применяться для действия алгоритма аварийной остановки цепи питания.

Независимо от типа подключения электромотора и числа контакторов пускателя, подключение термореле в схему осуществляется простым методом. Оно размещается после контакторов перед электрическим двигателем, а размыкающийся (постоянно замкнутый) включается по последовательной схеме с кнопкой «стоп».

Достоинства и недостатки
Из преимуществ термореле можно назвать:
  • Малые размеры.
  • Небольшая масса.
  • Низкая стоимость.
  • Простая конструкция.
  • Долговечная работа.
Читайте также:  Дверной звонок - на сегодняшний день современный беспроводной звонок
Недостатками тепловых реле отмечаются:
  • Необходимость периодической настройки.
  • Периодическая проверка.
Как выбрать тепловые реле
При выборе и установке термореле необходимо учитывать, где оно будет применяться, и наличие функций:
  • Тепловое 1-фазное реле тока с автосбросом возвратится в исходное положение по прошествии некоторого промежутка времени. Если электромотор после сброса все еще находится в состоянии перегрузки, то реле снова сработает.
  • Реле с компенсацией температуры внешней среды (ТРВ) качественно работают в большом интервале температур внешней среды.
  • Многие тепловые реле оснащены разной степенью проверки фаз. Такие механизмы имеют возможность проверить электродвигатель на разрыв фазы с контактора, дисбаланс. При возникновении аварийной ситуации реле прекращает подачу электрического тока к мотору. Дисбаланс может вызвать опасные колебания тока или напряжения электродвигателя, что способствует его неисправности.
  • Функция недогрузки в термореле способна выявить снижение тока в цепи. Это происходит, когда электродвигатель начал работать вхолостую. Такие реле служат для выявления этих различий, по принципу обнаружения перегрузки.
  • Тепловые реле со световыми индикаторами – это модель со светодиодами или датчиками сигналов состояния и включения.

Стоимость термореле колеблется в широких пределах от 500 до нескольких тысяч рублей. Это зависит от производителя, характеристик, уровня пропускания тока. Перед приобретением нужно внимательно ознакомиться с описанием. Вся основная интересующая информация находится в паспорте изделия. Там же имеется инструкция по подключению.

Что такое тепловое реле

Тепловое реле несет защитные функции элекроцепи и электроприбора в целом от перегрузок в сети. Работа этого элемента может быть напоминать функционирование теплового разъединителя или автоматического выключателя. От перегрузки, ее величины – отклонение от предусмотренного номинального значения. Срабатывание теплового реле происходит спустя определенное время, вычисляющийся по токо-временным характеристикам.

В статье рассмотрены все вопросы работы, правила выбора, особенности установки. Также в качестве бонуса в материале содержится подробное техническое описание теплового реле и видеоролик на эту тематику.

Назначение и принцип работы

При перегрузке электродвигателей повышается потребляемый ток, соответственно увеличивается его нагрев. Если двигатель перегревается – нарушается целостность изоляции обмоток, быстрее изнашиваются подшипники, они могут заклинить. При этом тепловой расцепитель автомата может и не защитить оборудование. Для этого нужно тепловое реле. Перегрузки могут возникать из-за перекоса фаз, затрудненного движения ротора, вследствие как повышенной механической нагрузки, так и проблем с подшипниками, при полном заклинивании вала двигателя и исполнительных механизмах.

Если реле сработало по неизвестным причинам, и осмотр показал, что всё в порядке, вы можете вернуть контакты реле в исходное состояние, для этого на нем есть кнопка. Реле может сработать и в случае затяжного пуска электродвигателя. При этом в обмотках протекают повышенные значения токов. Затяжной пуск – процесс, когда двигатель долго выходит на номинальные обороты. Может произойти из-за перегрузки на валу, либо из-за низкого напряжения в питающей сети.

Принцип работы

В реле есть пара биметаллических пластин с разным температурным коэффициентом расширения. Пластины жестко соединены друг с другом, если их нагреть, то конструкция изогнется в сторону участка с меньшим температурным коэффициентом расширения. Греются пластины за счет протекания тока нагрузки или от нагревателя, через который проходит ток нагрузки, на схеме изображено в виде нескольких витков вокруг биметалла. Протекающий ток нагревает пластину до определенного предела. Чем выше ток, тем быстрее нагрев.

Стоит учитывать, что если реле находится в жарком помещении – нужно выставлять ток срабатывания с большим запасом, ведь происходит дополнительный нагрев от окружающей среды. К тому же, если реле только что сработало – контактам нужно некоторое время, чтобы остыть. Иначе может произойти повторное ложное срабатывание. Давайте рассмотрим конкретный пример. Выше вы видите устройство реле ТРН. Оно является двухфазным. Состоит из трёх ячеек, в крайних нагревательные элементы, посередине температурный компенсатор, регулятор тока срабатывания, расцепитель, размыкающий контакт, рычаг возврата.

Виды тепловых реле

Тепловые реле могут подключаться на все три фазы или на две из трёх, в зависимости от конструкции. Большинство реле конструктивно разработаны для соответствия определенным магнитным пускателям, это нужно для удобства и аккуратности монтажа. Рассмотрим некоторые из них.

  • РТЛ – подходит для использования с пускателями типа ПМЛ. С набором клемм КРЛ используется как самостоятельный прибор защиты.
  • РТТ – подходит для монтажа с пускателями ПМЕ и ПМА. Также может использоваться как самостоятельное, если его смонтировать на специальную панель.
  • РТИ – тепловые реле для пускателей КМИ и КМТ. На лицевой вы можете видеть пару дополнительных блок-контактов, для реализации схем индикации и прочего.
  • ТРН – двухфазное тепловое реле. Устанавливается в трёхфазных двигателях, при этом подключается в разрыв двух фаз. Температура окружающей среды не влияет на его работу. На регуляторе тока есть 10 делений 5 на уменьшение, 5 на увеличение, цена одного деления – 5%.

На самом деле тепловых реле существует великое множество, но все они выполняют одну функцию. Реле очень часто монтируют в специальный железный ящик. На фото пускатель ПМА 4-й величина на 63 Ампера, с трёхфазным тепловым реле. К современным пускателям тепловое реле подключается так как изображено на фото ниже, получается цельная конструкция.

Сфера применения

Одним из важнейших условий прибыльной работы предприятия является долговечность используемого электрооборудования. Она зависит от условий, в которых приходится работать электроустановкам. Если оборудование часто подвергается токовым перегрузкам, то на его длительную и надёжную работу лучше не надеяться. Ведь электрооборудование способно работать продолжительное время только при условии протекания по нему номинальных токов. Превышение величины тока (перегрузка) ведёт к увеличению температуры оборудования и к преждевременному старению изоляции.

Для защиты электрических двигателей от токовой перегрузки на производстве успешно применяются тепловые или термореле. Наибольшее распространение получило реле с биметаллической пластиной, которая состоит из двух пластинок, изготовленных из разных металлов, имеющих неодинаковый коэффициент теплового расширения. Эти пластинки скреплены между собой методом горячей прокатки или сваркой. При нагревании биметаллической пластины она изгибается, так как один металл расширяется больше, другой меньше. На этом принципе и основана работа термореле. Чем больше разность температурных коэффициентов у металлов, тем больше они подходят для использования в биметаллической пластине. Наилучшими вариантами разного линейного расширения сегодня являются: немагнитная сталь – медь, никель – сталь, латунь – инвар.

Обычно, биметаллическая пластина нагревается протекающим через неё током нагрузки. Также существуют модели, в которых пластина разогревается специальным нагревательным элементом, через который течёт ток нагрузки. Но наилучшим считается комбинированный нагрев: и током нагрузки через пластину, и теплом от нагревательного элемента, через который также протекает нагрузочный ток. Изогнувшаяся от тепла пластина воздействует на контакты реле. Однако, учитывая, что изгиб пластины происходит довольно медленно, и как следствие, при размыкании контактов будет образовываться электрическая дуга, в конструкции реле предусматривается ускоряющее устройство. Наилучшим из них является «прыгающий контакт».

Возврат реле в отправное состояние осуществляется специальной кнопкой или (в других моделях) – самопроизвольно после охлаждения биметаллической пластины. Отдельные версии термореле могут защищать электрооборудование от несимметрии токов разных фаз и от пропадания одной из фаз. Исполнительным механизмом теплового реле является, как правило, магнитный пускатель. Реле могут устанавливаться как вовнутрь пускателя, так и на стандартную крепёжную рейку. Диапазон номинальных токов тепловых элементов очень велик и составляет от 1 до 600 ампер.

При выборе теплового реле следует руководствоваться номинальным током нагрузки (как правило, это электродвигатель). Обычно ток термореле на 20-30% больше чем номинальный ток двигателя, так как реле срабатывает в течение 20 минут, если ток выше рабочего значения в 1,2-1,3 раза. Необходимо учитывать и время нагрева, так как при кратковременной перегрузке, нагревается только обмотка двигателя, а при долговременной – весь корпус целиком. Поэтому термореле рационально использовать в тех случаях, когда цикл работы оборудование составляет свыше получаса.

Также необходимо учитывать и температуру окружающей среды, в которой будет работать тепловое реле, так как с ростом окружающей температуры, снижается ток срабатывания термореле. Если в помещении, где установлено защищаемое электрооборудование, летом вентиляция не справляется с поддержанием нормальной температуры, необходимо отрегулировать термореле или подобрать к нему другой нагревательный элемент. Естественно, что устанавливать тепловое реле нужно в том же помещении, где установлен защищаемый объект. Категорически следует избегать соседства с концентрированными источниками тепла (системы отопления, нагревательные печи и т.п.).

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем. Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН. Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2. Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт.

Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ. На реле РТИ эти контакты размещены на передней панели:

  • NO – нормально-открытый – на индикацию;
  • NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Выбор для конкретного двигателя

Допустим, у нас есть двигатель АИР71В4У2. Его мощность 0.75 кВт. У нас есть трёхфазная сеть с линейным напряжением 380В. Двигатель рассчитан на 220В, если соединить обмотки треугольником и 380В, если звездой. Номинальный ток такого двигателя с обмотками соединенными по схеме звезды 1.94А. Отсюда следует, что нам нужно подобрать тепловое реле для двигателя с током в 1.94 А. Ток срабатывания теплового реле должен превышать номинальный ток двигателя в 1.2 – 1.3 раза. То есть: Iреле=IН*1.2…1.3

Пусть двигатель работает в составе механизма, в котором допускаются кратковременные, но значительные перегрузки, например для подъёма малых грузов. Тогда ток уставки выбираем в 1.3 раза больше номинального тока асинхронного электродвигателя.

Т.е реле должно сработать при токе 2.5-2.6А. Нам подходят такие реле:

  • РТЛ-1007, с токовым диапазоном 1.5-2.6 А;
  • РТЛ-1008, токовый диапазон 2,4-4 А;
  • РТИ-1307, токовый диапазон 1,6…2,5 А;
  • РТИ-1308, токовый диапазон 2,5…4 А;
  • ТРН-25 3,2А (с помощью регулятора можно понизить или повысить ток на 25%).

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн – номинальный ток нагрузки электродвигателя, Iнэ – номинальный ток нагревательного элемента теплового реле, с – коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

где Т – температура окружающей среды, °С.

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Проверка

Рассмотрим на примере реле типа ТРН. Чтобы убедиться в исправности реле нужно:

  • Проверить состояние корпуса, нет ли на нем трещин или сколов.
  • Проверить при подключенной нагрузке с номинальным током.
  • Разобрать реле и проверить целостность контактов, остутствие на них нагара,
  • Проверить, не согнуты ли нагреватели.
  • Проверить расстояние между биметаллом и нагревательными элементами. Оно должно быть одинаковым, если нет, то отрегулировать с помощью крепежных винтов.
  • Подать номинальный ток через один из нагревателей, установить в 1.5 раза больше номинального тока. В таком состоянии реле работает 145 с, затем постепенно поворачивают эксцентрик регулировки в положение «-5», до срабатывания реле.

После активного охлаждения в течение 15 минут проверяют второй нагревательный элемент таким же способом.

Заключение

Тепловые реле – важный элемент в защите электрооборудования. С его помощью вы защитите своё устройство от перегрузок, а его характеристики позволят переносить кратковременные скачки тока без ложных срабатываний, чего не может обеспечить автоматический выключатель. Реле могут использоваться как вместе с магнитными пускателями соединяясь с его выходными клеммами напрямую, тем самым образуя единую конструкцию, так и в качестве самостоятельных защитных устройств, размещаться в щитке на дин рейке и в электрошкафах.

Ссылка на основную публикацию