Лампочка из экономки светодиодная

Лампочка из экономки светодиодная

Изготовление светодиодной лампы из негодной энергосберегающей

Автор: SSMix
Опубликовано 03.09.2012
Создано при помощи КотоРед.

Бум люминесцентных энергосберегающих ламп постепенно подходит к своему завершению. На смену им уже пришли светодиодные лампы, обладающие неоспоримыми преимуществами: лучшая экономичность, моментальный выход в рабочий режим, большой срок службы, они не содержат паров ртути и не излучают ультрафиолет после выгорания люминофора внутри колбы. Единственная заминка – это пока ещё высокая стоимость светодиодных ламп. Но если имеется вышедшая из строя люминесцентная энергосберегающая лампа, то её можно легко переделать в светодиодную, используя приведенные ниже способы.

Сначала небольшое предисловие.

Приобретённые несколько лет назад энергосберегающие лампы фирмы ECOLIGHT довольно таки быстро стали выходить из строя. Сначала перегорела нить накала в колбе одной лампы, но эта неисправность была оперативно устранена путём установки перемычки на печатной плате параллельно оборванной нити накала. Лампа замечательно зажигалась и от оставшейся целой нити накала. Затем та же участь постигла вторую лампу. После ремонта, поработав ещё где-то с полгода, перегорели и оставшиеся нити накала сначала в одной лампе, а через месяц и в другой. Связываться с люминесцентными лампами больше не захотелось, и возникла мысль о переделке вышедших из строя ламп в светодиодные.

Первая лампа имела мощность 18 Вт и довольно широкий корпус диаметром 55 мм, что натолкнуло на мысль установить в нём несколько десятков ультраярких белых светодиодов с рабочим током 20 мА, включив их в сеть последовательно через диодный мост, а в качестве гасящего балласта использовать конденсатор. В результате получилась схема, показанная на рисунке ниже:

Всего было использовано 40 светодиодов HL-654H245WC ø4.8 мм с яркостью 1,5 Cd и углом 140°. Схема собрана на двух печатных платах из одностороннего фольгированного стеклотекстолита:

Между собой платы скреплены при помощи одной стойки по центру. Вот что получилось в итоге:

Субъективно яркость свечения этой лампы оказалась примерно такая же, как и у 30-ваттной лампы накаливания, а потребляемая мощность – всего 1,1 Вт:

Оттенок лампы по сравнению с лампой накаливания получился намного холоднее.

Что интересно, однотипные и одинаковые по яркости светодиоды тёплого и холодного оттенка, имеющиеся в продаже, отличаются по цене в 4 раза, но даже применённые светодиоды тёплого свечения (более дорогие) по сравнению с лампой накаливания имеют синеватый оттенок. Что касается получившейся стоимости изготовленной светодиодной лампы, то она оказалась на уровне готовой покупной с аналогичным количеством светодиодов. Правда неизвестно, есть ли в этих готовых лампах на 220 В выпрямитель со сглаживающим конденсатором. Скорее всего, нет, ведь проще и дешевле соединить последовательно пары встречно включённых светодиодов и добавить балластный конденсатор. И пусть себе мигает лампа с удвоенной частотой сети, ведь китайскому производителю нет никакого дела до зрения потребителя.

Учитывая довольно высокую стоимость сорока светодиодов (0.125$ * 40 = 5$), для переделки второй лампы мощностью 9 Вт в корпусе диаметром 38,5 мм

было решено использовать один мощный трёхваттный светодиод. Выбор пал на EDEX-3LA1-E1 стоимостью 1.875$, имеющий следующие характеристики:

цветовая температура. 3200 К;

световой поток (при токе 700 мА). 130 лм;

угол свечения. 135°;

рабочий ток. 700 мА;

К этим светодиодам в продаже имеются готовые радиаторы “STAR” стоимостью 0.156$:

Чтобы получить ток величиной до 700мА для запитки такого мощного светодиода было решено использовать уже имеющийся преобразователь в перегоревшей люминесцентной лампе. Замкнув все выводы колбы лампы и намотав на имеющийся на плате дроссель дополнительную обмотку, такой преобразователь можно превратить источник питания с минимальными затратами. По сути, из лампы получается готовый электронный трансформатор, необходимо только обеспечить стабилизированный ток для питания светодиода.

Вот схема энергосберегающей лампы, срисованная прямо с платы:

Для переделки её в электронный трансформатор достаточно выпаять колбу, замкнуть между собой точки 2 и 4 платы и намотать дополнительную обмотку на дроссель L2. К дополнительной обмотке подключается выпрямитель с фильтром.

Для стабилизации тока через светодиод первоначально был опробован способ, предложенный в [1]. Суть его заключается в намотке дополнительной обмотки на управляющий трансформатор T1 и шунтировании её открывающимися полевыми транзисторами для срыва колебаний преобразователя при превышении выходного напряжения (тока). Однако ничего путного из этого не вышло. Как показал анализ работы приведенной выше схемы, для восстановления колебаний преобразователя необходимо время около 3 мс для заряда конденсатора C3 до напряжения пробоя динистора DB3 (30 В). Даже при очень кратковременном шунтировании дополнительной обмотки на Т1 время повторного запуска преобразователя составляло около 3 мс. В результате регулировочная характеристика преобразователя получается неполной. При попытке лишь “слегка” уменьшить выходное напряжение, к примеру до 90…95 %, на выходе фильтра выпрямителя (с дополнительной силовой обмотки дросселя) вместо постоянного напряжения сразу появлялись короткие положительные импульсы с относительно длительными провалами 3 мс. Т.е. пределы регулирования были возможны лишь на начальном небольшом участке работы преобразователя.

Поэтому было применено другое схемное решение, показанное на рисунке ниже:

Дополнительная схема представляет собой импульсный стабилизатор тока, собранный без применения специализированных микросхем на широко распространённой дешевой элементной базе. На дроссель лампы наматывается дополнительная обмотка, напряжение с которой подаётся на диодный мост VD1…VD4 с конденсаторами фильтра C1, C3. Использование мостовой схемы вызвано сложностью намотки на дроссель L2 вдвое большого числа витков с отводом от середины ввиду ограниченного места.

На микросхеме DA1 выполнен стабилизатор напряжения +2,5 В для питания компаратора DA2 и резистивного формирователя опорного напряжения R5, R6. Резистор R7 сопротивлением 0,1 Ом выполняет функцию датчика тока. На транзисторах VT1, VT2 собран силовой ключ. В исходном состоянии при подаче питания, пока ток через светодиод HL1 ещё не протекает, на выходе компаратора DA2 высокий уровень, VT1 закрыт а VT2 открыт через R4. Через дроссель L1 в нагрузку протекает нарастающий ток. При превышении на инвертирующем входе компаратора DA2 опорного напряжения последний переключается в состояние с низким уровнем на выходе. VT1 резко открывается и шунтирует переход з-и VT2, закрывая последний и вызывая ток самоиндукции в цепи VD5, L1, C4, C5, HL1, R7. После уменьшения напряжения на инвертирующем входе компаратора DA2 по мере разряда C4, C5, последний опять переходит в состояние с высоким уровнем на выходе. VT1 закрывается, VT2 открывается и весь процесс повторяется заново. Частота колебаний при входном напряжении 7 В составляет 50…70 кГц. Измеренный КПД импульсного стабилизатора тока составил 86%.

Величина тока через светодиод выбрана равной 0,6 А для более щадящего режима работы и меньшего его нагрева.

Процедура переделки энергосберегающей лампы

Вскрывается корпус лампы при помощи плоской отвёртки (крепление на защёлках). Верхняя часть с колбой осторожно утилизируется (Внимание! В колбе пары ртути! При повреждении колбы необходимо провести обработку окружающих контактировавших предметов раствором марганцовки). Из платы конденсатор C5 можно выпаять, т.к. в работе он не участвует. Закорачиваются точки 2 и 4 на плате. Выпаивается дроссель L2 и проводом МГТФ-0,1 наматывается дополнительная обмотка из 14 витков (практически до полного заполнения зазора). Лучше использовать именно МГТФ для хорошей гальванической развязки.

Дроссель впаивается на место. Не помешает проверить ESR-метром электролит C3. При возможности его лучше заменить на новый ёмкостью 4,7…10 мкФ х 400 В (105°С). Это уменьшит пульсации частотой 100 Гц на выходе преобразователя.

После этого изготавливается плата из одностороннего фольгированного стеклотекстолита:

Для изготовления дросселя L1 использован готовый ДП2-0,1 на 100 мкГн. С него ножом снята штатная обмотка и намотана новая проводом ПЭВ2 ø0,3 мм в равномерно по всей длине сердечника в 3 слоя. Индуктивность дросселя 51 мкГн. Можно использовать и покупной дроссель подходящих габаритов с индуктивностью 47 мкГн и рассчитанный на ток не менее 1,5…2 А.

Транзистор VT2 IRLML6401 можно попробовать заменить на IRLML6402.

Диоды VD1…VD4 SS14 можно заменить на любые подходящие SMD-диоды Шоттки, рассчитанные на ток не менее 1А и обратное напряжение 30…40В, например SM5818, SM5819.

Диод VD5 SS24 (2А, 40В) заменим на SS22, 10BQ015 или аналогичные.

Как было сказано выше, светодиод распаивается на готовый радиатор “STAR”, который в свою очередь устанавливается на более массивный радиатор. В данном случае использован радиатор со старой материнской платы. С отрезанными “ушками” крепления его габариты 37,5 х 37,5 х 6 мм. Радиатор крепится к дополнительной плате на 3-х стойках М3х15. Сама плата крепится к верхней части корпуса лампы несколькими витками изоленты. Между штатной и дополнительной платами необходимо проложить изоляционную прокладку, вырезанную, например, из нефольгированного стеклотекстолита.

Первое включение доработанной лампы желательно производить с нагрузкой в виде 5-ваттного резистора сопротивлением 5…6 Ом с последовательно включённым амперметром. К сети 220 В лампу безопаснее включать через обычную лампочку накаливания на 40…60 Вт. В нормальном режиме работы её спираль светиться не должна. На катоде VD5 должны присутствовать прямоугольные импульсы частотой 50…70 кГц. Напряжение на C3 должно быть 5…8 В, ток через нагрузку 0,6 А. Более точно величину тока можно выставить подбором сопротивления резистора R5. После этого можно подключать светодиод.

Субъективно яркость свечения доработанной таким образом лампы соответствует лампе накаливания мощностью 30 Вт. Оттенок тёплый, но по сравнению с лампой накаливания немного холоднее. Измеренная потребляемая мощность составила 3,3 Вт:

Себестоимость второго варианта светодиодной лампы составила около 3.2$.

Литература:

1) Как стабилизировать электронный трансформатор. А.Е.Шуфотинский. Радиоаматор №1/2010.

Переделка энергосберегающей лампы в светодиодную

Энергосберегающие лампы активно позиционировались как замена низкоэкономичным и ненадежным лампам накаливания. Постепенное снижение цен на «экономки» привело к тому, что они получили практически повсеместное распространение.

Прогресс не стоит на месте и на смену энергосберегающим люминесцентным лампам приходят светодиодные источники света. Имея большую экономичность, они превосходят энергосберегающие лампы по экологичности, поскольку люминесцентные лампы содержат ядовитую ртуть, а светодиоды абсолютно безопасны (подробнее о вреде светодиодных ламп).

Самый большой минус светодиодов – их высокая стоимость. Не удивительно, что многие занимаются переделкой энергосберегающих ламп в светодиодные, используя по максимуму доступную и недорогую элементную базу.

Теоретическое обоснование

Светодиоды работают при низком напряжении – порядка 2-3В. Но самое главное, для нормальной работы требуется не стабильность напряжения, а стабильность тока, по ним протекающего. При понижении тока снижается яркость свечения, а превышение приводит к выходу из строя диодного элемента. Полупроводниковые устройства, к которым относятся светодиоды, имеют ярко выраженную зависимость от температуры. При нагреве сопротивление перехода падает и возрастает прямой ток.

Простой пример: источник стабильного напряжения выдает 3В, при токе потребления светодиода 20мА. При повышении температуры напряжение на светодиоде остается неизменным, а ток возрастает вплоть до недопустимых значений.

Для исключения описанной ситуации, источники света на полупроводниках запитывают от стабилизатора тока, он же драйвер. По аналогии с люминесцентными лампами драйвер иногда называют балластом для светодиодов.

Наличие входного напряжение 220В вместе с требованием стабилизации тока приводит необходимости создания сложной схемы питания светодиодных ламп.

Читайте также:  Грамотное распределения света в доме

Практическая реализация идеи

Простейший источник питания светодиодов от сети 220В имеет следующий вид:

Примитивный источник питания для светодиодов от сети 220В

На приведенном рисунке резистор обеспечивает падение излишка напряжения питающей сети, а диод, включенный параллельно, защищает LED элемент от импульсов напряжения обратной полярности.

Как видно из рисунка, что можно проверить расчетами, требуется гасящий резистор большой мощности, выделяющий во время работы много тепла.

Ниже приведена схема, где вместо резистора используется гасящий конденсатор

Схема с гасящим конденсатором

Использование в качестве балласта конденсатора позволяет избавиться от мощного резистора и повысить КПД схемы. Резистор R1 ограничивает ток в момент включения схемы, R2 служит для быстрого разряда конденсатора в момент выключения. R3 дополнительно ограничивает ток через группу светодиодов.

Конденсатор С1 служит для гашения излишков напряжения, а С2 сглаживает пульсации питания.

Диодный мост образован четырьмя диодами типа 1N4007, которые можно выпаять из негодной энергосберегающей лампы.

Расчет схемы произведен для светодиодов HL-654H245WC с рабочим током 20мА. Не исключено применение аналогичных элементов с таки током.

Так же, как и в предыдущей схеме, здесь не обеспечивается стабилизация тока. Чтобы исключить выход светодиодов из строя, в схеме балласта для светодиодных ламп емкость конденсатора С1 и сопротивление резистора R3 выбраны с запасом, чтобы при максимальном входном напряжении и повышенной температуре светодиодов, ток через них не превышал допустимых значений. В нормальном режиме ток через диоды несколько менее номинального, но на яркости лампы это практически не сказывается.

Недостаток подобной схемы заключается в том, что использование более мощных светодиодов потребует увеличение емкости гасящего конденсатора, имеющего большие габариты.

Аналогично выполняется питание светодиодной ленты от платы энергосберегающей лампы. Важно, чтобы ток светодиодной ленты соответствовал линейке светодиодов, то есть 20мА.

Используем драйвер энергосберегающей лампы

Более надежна схема, когда используется драйвер из энергосберегающей лампы с минимальными переделками. В качестве примера на рисунке показана переделка энергосберегающей лампы мощностью 20Вт для питания мощного светодиода с током потребления 0.9А.

Переделка светодиодной лампы для питания светодиодов

Переделка электронного балласта для светодиодных ламп в данном примере минимальна. Большая часть элементов в схеме оставлена от драйвера старой лампы. Изменениям подвергся дроссель L3 и добавлен выпрямительный мост. В старой схеме между правым выводом конденсатора С10 и катодом диода D5 была включена люминесцентная лампа.

Теперь конденсатор и диод соединены напрямую, а дроссель используется в качестве трансформатора.

Переделка дросселя заключается в намотке вторичной обмотки, с которой и будет сниматься напряжение для питания светодиода.

Не разбирая дроссель, на него нужно намотать 20 витков эмалированного провода диаметром 0.4мм. При включении напряжение холостого хода вновь выполненной обмотки должно составлять около 9.5–9.7В. После подключения моста и светодиода, амперметр, включенный в разрыв питания LED элемента, должен показывать около 830–850мА. Большее или меньшее значение требует коррекции количества витков трансформатора.

Диоды 1N4007 или аналогичные, можно использовать от другой неисправной лампы. Диоды в экономках используются с большим запасом по току и напряжению, поэтому выходят из строя крайне редко.

Советы и предостережения

Все приведенные схемы светодиодных драйверов из энергосберегающей лампы, хоть и обеспечивают низковольтное питание, имеют гальваническую связь с сетью переменного тока, поэтому при работе по отладке нужно соблюдать меры предосторожности.

Наилучшим и самым безопасным будет использование при работе разделяющего трансформатора с одинаковыми первичной и вторичной обмотками. Имея на выходе те же самые 220В, трансформатор будет обеспечивать надежную гальваническую развязку первичной и вторичной цепей.

Действительно ли светодиодные лампы экономят ваши деньги. Реальный расчет

Сколько реально можно сэкономить на электричестве, если поменять все лампочки на новые — светодиодные? Последние пять лет в кругу моих знакомых всплывает тема замены лампочек. Я как сторонник светодиодных лампочек всячески их рекламирую. Но практически всегда сталкиваюсь с непониманием. Кто-то говорит, что они не так ярко светят. Другие утверждают, что они мигают, и это очень вредно. Следующая серия обсуждения возникает на даче. Теща считает, что газоразрядные лампы светят ярче, чем светодиодные… На упаковке лампочек пишут мощность и световой поток. Как проверить, насколько ярко светит лампочка? В общем, разговор получается бессмысленным, поскольку определить характеристики светового потока на глаз невозможно.


Стоит ли вообще менять одни лампочки на другие?

Лет десять назад началась «движуха» по замене лампочек накаливания на энергосберегающие газоразрядные лампочки. Начали менять — а потом оказалось, что через пару лет у них начала «дохнуть» электроника. Лампочки через пару лет начинали раздражающе мигать и плохо загораться при включении. Притом они стоили чуть ли не в 10 раз дороже ламп накаливания. Такая экономия при замене оказалась призрачной.

Тестируем разные лампочки

В целях поиска истины я приобрел «последний аргумент» — люксметр TASI TA 8132. Такие измерители освещенности стали сейчас очень доступны по цене. С его помощью можно было замерить освещенность с точностью до 1 люкса. Для сравнения: человеческий глаз для с трудом улавливает двукратное (!) изменение светового потока. Человеческий мозг подстраивается под новые условия, и вам кажется, что стало чуть светлее или темнее.

В общем, все надо проверять. Чтобы тест был полным, кроме светового потока, следовало проверить и реально потребляемую лампочкой мощность. Мало ли, что там на коробке напишут! Для измерения мощности заказал в интернет-магазине встраиваемый тестер. Он показывал сразу ток, напряжение и потребляемую мощность.

Для тестирования лампочек сделал простенький стенд. Два типа патронов были установлены на фотоштатив. Подключен встраиваемый тестер. Отражатель изготовил из потолочной плитки. Фотодатчик люксметра положил на диван в метре от источника света. Когда посылка с люксметром приехала из Китая, в ней были прибор в чехле и батарейки, что сильно меня порадовало.

Люксметр
TASI TA 8132. Фото автора

Фотодатчик закрыт крышкой. При замере крышку надо снимать. Фотодатчик соединяется с корпусом достаточно длинным проводом. Это удобно при проведении замеров в труднодоступных местах. Освещенность, которую может измерить прибор, — от 1 до 200000 люксов. Также есть функция запоминания минимального и максимального значений освещенности. Эти режимы включаются кнопкой МАХ.


Люксметр, фотодатчик. Фото автора

Устанавливаем элементы питания — две батарейки ААА. Фотодатчик можно установить на штатив.


Люксметр: вставляем батарейки. Фото автора

Не надо иметь глубоких познаний в электротехнике, чтобы подключить встраиваемый тестер. Схема подключения тестера приклеена на прибор с обратной стороны.


Схема подключения тестера. Фото автора

Подключаем тестер и устанавливаем на штатив. Тестер закреплен канцелярской резинкой.


Тестер подключен. Фото автора

Сравниваем характеристики пятидесятиваттной галогенки и такой же светодиодной лампочки с цоколем GU 5.3.


Лампы для теста. Фото автора

Галогенка очень сильно греется. Она погорела минуты три, и после выключения я смог ее вытащить только минут через 5. 50-ваттная галогенка потребляла 47,7 Вт, дала освещенность 440 люксов на расстоянии в 1 м. C ветодиодная лампочка-аналог с заявленной мощностью 6 Вт потребляла на самом деле 5,7 Вт и светила на 232 люкса. Светодиодная лампа должна была дать столько же света при мощности в 10 раз меньше. Видимо, дело было в том, что галогенка, как точечный источник с отражателем, давала более узкий и более яркий световой поток, а светодиодная лампа дала более рассеянный свет. То есть светодиодная лампа светила с бóльшим углом.


Тестируем галогеновую лампу. Фото автора

Включаем по очереди 3 разные лампочки под патрон Е27. При разной потребляемой мощности они должны были дать одинаковую освещенность.


Лампы для теста. Фото автора

Для этих лампочек был сделан отражатель из потолочной плитки, чтобы не потерять ни одного фотона.


Отражатель из потолочной плитки. Фото автора

60-ваттная лампочка накаливания — 60,1 Вт. Свет — 118 люксов.


Тестируем лампу накаливания. Фото автора

Эти лампочки дали идеальные результаты по соотношению мощности и освещенности. Освещенность была практически одинаковой. А светодиодная лапочка потребляла в 10 раз меньше энергии, чем лампа накаливания, и в 2 раза меньше энергосберегающей газоразрядной лампы.


Данные по тестируемым лампочкам. Фото автора

Считаем экономику замены

Мой коллега заменил все лампочки в квартире на светодиодные. Заменил галогенки 40 Вт в ванной на 3-ваттные светодиодные лампы и так далее. Освещенность визуально не изменилась. На примере этой галогенки считаем: экономия составила 37 Вт⋅ч. Галогенка стоит 25 руб., ее светодиодный аналог — 75 руб. Теперь считаем, за какое время лампочка окупится. Для ровного счета пусть киловатт стоит 5 руб. 1 киловатт мы экономим за 27 часов работы. Делим разницу в цене на стоимость киловатта и умножаем на 27. Лампочка окупится через 270 часов работы и начнет приносить прибыль. В среднем, поменяв все лампочки дома, мой коллега теперь платит в месяц за электроэнергию немногим более 300 руб. Сэкономил более чем в 2 раза!

Через два года одна светодиодная лампочка у него перегорела. Он не поленился, нашел чек и поехал в «Леруа» менять лампочку. Да, согласен, мой коллега очень не ленивый, особенно когда дело до денег доходит. В «Леруа» ему сказали, что не могут поменять ему лампочку: нет таких. Вернули деньги. На эти деньги он пошел и купил уже две похожие по характеристикам лампочки. За два года они сильно подешевели. А чек снова сохранил!

Вот такой расчет я сделал по статистике 10-летнего использования разных ламп.


Экономия посчитана максимально близко к реальности. Фото автора

Самостоятельная переделка энергосберегающей лампы в светодиодную

С развитием новейших технологий на полках специальных магазинов появилось множество осветительных приборов, каждый из которых отличается индивидуальными характеристиками яркости, экономичности и комфорта для глаз.

Много лет изготовители светодиодных ламп старались сконструировать приспособление, схожее по своим свойствам с обычной лампой накаливания, плюс ко всему малое потребление электроэнергии, низкий уровень тепловыделения и влияния на окружающих. В результате потребителям были представлены энергосберегающие и светодиодные лампочки.

Специалисты советуют отдавать предпочтение последним моделям, поясняя выбор рядом очевидных преимуществ. Задача усложняется для тех, кто хочет узнать, как переделать энергосберегающее устройство в светодиодное своими руками.

Основные отличия

Светодиодная лампа, так или иначе, обеспечивает помещению более яркое освещение. При напряжении 13 Вт она выдаёт 1000 лм, энергосберегающая — всего 800 лм.

Что касается теплоотдачи, она определяется по показателям поддержания оптимальной температуры в здании, сохранении в подходящем состоянии бытовой техники и мебели. И здесь тоже лидирует светодиодное изделие, обладая теплоотдачей 30,5 градусов при теплоотдаче энергосберегающего устройства 81,7 градусов.

Последнее изделие рассчитано на 8000 часов активной работы, тогда как для первого установлен рекордный срок эксплуатации — до 50000 часов. Причём светодиодная лампа с течением времени не теряет первоначального оттенка освещения и яркости, чего нельзя сказать об энергосберегающей.

Лавры первенства достаются светодиодным источникам и в процессе утилизации, их можно выбросить в мусорный контейнер. Энергосберегающий светильник, выброшенный на свалку, загрязняет окружающую среду (воздух и грунтовые воды) ядовитыми ртутными парами, в результате чего происходит сильнейшее отравление людей, животных и рыбы. Именно поэтому утилизация таких ламп должна проходить в соответствии с определёнными правилами.

Энергосберегающая лампа

Несмотря на плюсы и минусы, светодиодные и энергосберегающие устройства являются взаимозаменяемыми — изготовители побеспокоились о соответствующем размере любой из ламп, и патронов для них.

Общим для двух конкурирующих аналогов является довольно качественный цветовой поток, обеспечивающий высокий уровень комфорта для сетчатки человеческого глаза.

Как сделать светодиодную лампу

Необходимые материалы

Для того чтобы переделать энергосберегающую лампочку в светодиодную своими руками, необходимо иметь при себе следующий список материалов:

  1. Сгоревшую, вышедшую из строя лампу.
  2. Небольшой кусок стеклотекстолита для соединения деталей между собой. Если есть другие идеи (кроме пайки), можете воспользоваться своей для решения вопроса, как крепить светодиоды.
  3. Комплект радиоэлементов, соответствующих определённой схеме, в том числе светодиоды. Специалисты советуют выбирать для сборки светодиодной лампочки своими руками обычные детали, которые в большом ассортименте представлены на каждом радиорынке, где их стоимость существенно ниже.
  4. Конденсатор объёмом 0,022 Mf, напряжение в котором составляет 400 V, одно сопротивление рассчитано на 1 мОм и пара сопротивлений на 200 Ом.
  5. Светодиоды — дешевле выпаять в нужной численности посредством ленты.

Изготовление схемы

Процесс создания схемы своими руками начинается с вырезания из текстолита окружности, диаметр которой равен 30 мм. Далее нанесите на круге дорожки, хорошо справляется с этой задачей лак для покраски ногтей. После покрытия одного слоя, отставьте деталь в сторону до тех пор, пока она полностью не высохнет.

Схема соединения элементов

В это время можно заняться химией, а именно своими руками изготовить массу, растворяющую медь. Для этого следует смешать медный купорос и обычную кухонную соль в соотношении 1:2. Обязательно добавьте небольшой объём тёплой воды (но не горячей!) и в полученную смесь окуните будущую плату. Уже через сутки вы заметите, как медь исчезла с текстолитового круга, осталась только та часть, которая была обработана лаком.

На завершающем этапе производится пайка. Однако прежде чем переходить к этой фазе, воспользуйтесь специальным растворителем и избавьтесь от слоя лака. Затем пролужите имеющиеся дорожки.

Схема светодиодной лампы

Возьмите миллиметровое сверло и на участках фиксации элементов сделайте отверстия. Наконец переходите к полноценной пайке схемы. Если вы не новичок в работе с паяльником и имеете определённые навыки, для создания светодиодной лампочки с напряжением 220 V своими руками, точнее, платы её драйвера, достаточно выделить 30 свободных минут.

Процесс сборки не обходится без разбора старой энергосберегающей лампы. Пропилите полотнищем по металлу периметр на самом конце пластика. Вытащите все внутренние детали, оставьте только провода, исходящие от цокольной части старого светильника. Снова вооружитесь паяльником и зафиксируйте плату к этим проводам.

Закрепите схему, оснащённую светодиодами, на внутренней поверхности пластика. Перед окончательной поклейкой включите лампу, если она работает — воспользуйтесь термоклеем.

Как обойтись без пайки

Некоторых может не устраивать пайка, в этом случае в качестве альтернативы драйвер для изделия заменяется полноценным блоком питания, предназначенным для фиксации и работы светодиодной ленты. Именно за счёт применения целого куска ленты, а не её отдельных отрезков, пайка и глобальная переделка не требуются.

С чем могут возникнуть проблемы? С размерами блока питания. Здесь понадобится либо переделать электропроводку от А до Я (освещение здания сводится к одной ветке), либо каждый светильник или ряд изделий запитать другим трансформатором. Если дом оснащён точечными осветительными приборами, можно выделить из цепи самый первый и поместить перед ним блок питания, после чего вместо ламп на 220 V установить самодельные светодиодные модели 12 V.

Как собрать лампочки

Сборка освещающих изделий своими руками осуществляется из пластиковых труб, порезанных на отдельные отрезки. По сторонам труб с помощью паяльника закрепляется светодиодная лента, обязательно сверьтесь с параллельной схемой. На конце пучка проводов разместите два штырька, выступающих в качестве цоколя.

Если светильники оснащены традиционным патроном для фиксации лампы, процесс упрощается в разы — достаточно модернизировать старые энергосберегающие приборы, причём применять внутренние платы уже нет необходимости. Как и в предыдущий раз, образец разбирается, а все «внутренности», кроме проводов цоколя, изымаются. Колпачок, из которого выходили люминесцентные трубки, закрывается цилиндром, выполненным из пластика, на котором фиксируются участки светодиодной ленты. Эти ленты подключаются к проводам из цоколя.

При подключении учитывайте «+» и «-». Плюс желательно припаять к нижней составляющей цоколя. Если подключение не дало результатов, разрешить проблему можно, переподключив выход блока питания к проводам.

Заключение

В любом случае способов перехода на более экономичное освещение предостаточно. Светодиодная лампа, изготовленная на основе энергосберегающей, поможет сэкономить ваши деньги, а сам процесс особенно понравится тем, кто обладает развитым техническим мышлением.

Экономят ли электроэнергию светодиодные лампы

Как всем известно, лампы накаливания имеют еле уловимое мерцание, которое при долгом нахождении человека в помещении, негативно влияет на его зрение. Привыкшему, это мерцание может быть вовсе незаметно, однако людям с чувствительными нервными окончаниями в глазном яблоке, это может причинять неудобства, а также приводить к раздражительности. Поэтому были изобретены светодиодные лампы, которые не имеют такого дефекта. Также они не имеют вредных излучений, таких как ультрафиолет и инфракрасный свет. По сути – в этом их главный принцип действия. Из-за подобного рода излучений, глаза чувствуют переутомление, в результате чего, человек может через время потерять зрение. Помимо прочего, немаловажным фактором, является экономия электроэнергии. Светодиодная лампа гораздо экономнее ламп накаливания, но цена диодных намного выше. Поэтому, в данной статье расскажем, как выбрать светодиодную лапу и разберём вопрос: экономят ли электроэнергию светодиодные лампы.

Преимущества и недостатки

Как упоминалось выше, главным преимуществом светодиодных ламп – является экономия электроэнергии, а в нашей стране, экономия электричества, залог комфортной жизни. При чём дизайн этих осветительных приборов очень изящен, что придаёт комнате или помещению некий шарм и привлекательность. В европейских странах давно уже не пользуются лампами накаливания. Мало того, есть даже специальные программы законодательства, по искоренению производства таких ламп и применения их в быту.

Стоит заметить, что обычные лампы очень часто «горят». Плохое качества волоса накаливания приводит к выходу из строя самой лампочки, а её можно только заменить. Светодиодные, или как их в народе называют энергосберегающие лампы, крайне редко приходят в негодность и продолжительность жизни у них от 1 до 5 лет, а иногда и дольше. Такой долгий срок жизни заключается в их устройстве.

Делают светодиодные осветительные приборы из разнообразных материалов, а также придают им разнотипную форму. На рынке Вы можете найти их на любой вкус и цвет, а также подобрать ту лампочку, которая подойдёт к вашему интерьеру, так как существуют светильники для общего (основного) освещения, так и для декора. Не стоит забывать про такой фактор, как очень высокая светоотдача. Например, лампа мощностью 15 Вт обеспечивает светом на все 120, при этом затраты напряжения минимальны.

Недостатком данных ламп является их стоимость, а также то, что лампы нельзя часто менять с одного места на другое, иначе срок её службы сократится в разы.

Смотрите также – Как устроена энергосберегающая лампа

Как выбрать

Когда Вы выбираете, какой осветительный прибор приобрести, то советуем обратить внимание на два фактора: производитель и характеристики. Количество производителей огромно, что позволяет подобрать именно ту лампу, которая Вам наиболее подходит. Производство происходит во всех странах мира, но основным поставщиком является всё же Китай.

Однако аспект, на котором необходимо сосредоточить своё внимание – характеристики продукции. А именно:

  • Предельные характеристики, то есть мощность, температура накаливания, углы, яркость и прочее. Характеристики прямо пропорционально зависят от производителя. То есть зачастую неисправности экономок могут быть связаны с неправильно предоставленной информацией о характеристиках прибора;
  • Устройство самого осветительного прибора, его внешний вид. На это стоит обратить внимание, потому что только Вы знаете, как та или иная лампа подойдёт к вашему интерьеру. Светильник может прийти в негодность из-за того, что не соответствует своему предназначению;
  • Ознакомьтесь со свойствами блока питания и микросхем. Тут важно учесть, что не каждая экономка будет работать при низких температурах, например, зимой на улице. Также учитываются перепады напряжения в электросети, так как это влияет на долговечность светильника в целом. Поэтому, перед эксплуатацией, ознакомьтесь с техникой безопасности и инструкцией по пользованию;
  • Дорогостоящие светодиодные лампы чаще всего имеют диоды, которые при выходе из строя можно заменять. На это также стоит обратить внимание, так как обычно срок службы этих светильников высок, но за счёт возможности ремонта он увеличивается в разы, ибо купить заменяемые диоды дешевле, чем саму лампу;
  • Также как показатель качества светильника, в коробке должен находиться подробный файл со всей информацией о характеристиках и инструкциями по эксплуатации. Так делает каждый уважающий себя производитель.

Не стоит забывать про подделки, так как они имеют место быть на рынке. На глаз это проверить невозможно, однако существуют специальные лаборатории, в которых вы можете проверить своё оборудование на подделку. Хотя стоит заметить, что подделки иногда не уступают по качеству оригиналу.

Расчёт экономии электроэнергии

Как упоминалось выше, главным преимуществом светодиодных ламп, является экономия электроэнергии. Эта экономия заключается в том, что при малом энергопотреблении, за единицу вырабатывается большое количество светового излучения.

Ниже мы приведем Вам таблицу сравнения некоторых ламп в отличии от светодиодной. Пожалуй, главной характеристикой лампы, является её световое излучение, которое измеряется в Люменах (Лм).

Лампа накаливания, мощность (Вт)Люминесцентная лампа, мощность (Вт)Светодиодная лампа, мощность (Вт)Световой поток (лм), усреднённые показатели
205-72-3250
4010-134-5400
6015-168-10700
7518-2010-12900
10025-3012-151200
15040-5018-201800
20060-8025-302500

Выбор очевиден, однако стоит учитывать тот факт, что все «экономки» излучают узконаправленную световую энергию. На коробках, производители часто указывают этот параметр, поэтому стоит внимательно отнестись к выбору осветительного прибора, чтобы он не приводил к дискомфорту. Также существует такой параметр, как цветовая теплоотдача, или проще говоря, цвет излучения света. В лампах накаливания только один оттенок, жёлтый, светодиодная лампа имеет несколько цветов и оттенков. Это также сделано для удобства освещения помещения, в зависимости от потребностей покупателя.

Вывод

Итак, из всего вышесказанного можно сделать вывод, что среди всех осветительных приборов на рынке, выгоднее всего брать именно светодиодную лампу, в целях экономии электроэнергии, а соответственно ваших денежных средств.

Надеемся, что данная статья дала вам ответ на вопрос, экономят ли электроэнергию светодиодные лампы и правда ли это.

Инструкция по изготовлению импульсного блока питания из энергосберегающей лампы

Энергосберегающие лампочки нашли широкое применение, как в бытовых, так и в производственных целях. Со временем любая лампа приходит в неисправное состояние. Однако при желании светильник можно реанимировать, если собрать блок питания из энергосберегающей лампы. При этом в качестве составляющих блока используется начинка вышедшей из строя лампочки.

Импульсный блок и его назначение

На обоих концах трубки люминесцентной лампы имеются электроды, анод и катод. В результате подачи электропитания компоненты лампы разогреваются. После нагрева происходит выделение электронов, которые сталкиваются со ртутными молекулами. Следствием происходящего становится ультрафиолетовое излучение.

За счет наличия в трубке люминофора осуществляется конвертация люминофора в видимое свечение лампочки. Свет появляется не сразу, а спустя определенный промежуток времени после подключения к электросети. Чем более выработан светильник, тем длительнее интервал.

Работа импульсного блока питания основывается на следующих принципах:

  1. Преобразование переменного тока из электросети в постоянный. При этом напряжение не меняется (то есть остается 220 В).
  2. Трансформация постоянного напряжения в прямоугольные импульсы за счет работы широтного импульсного преобразователя. Частота импульсов составляет от 20 до 40 кГц.
  3. Подача напряжения на светильник посредством дросселя.

Далее представлена схема функционирования балласта люминесцентной лампочки.

Источник бесперебойного питания (ИБП) состоит из целого ряда компонентов, каждый из которых в схеме имеет свою маркировку:

  1. R0 — выполняет ограничивающую и предохраняющую роль в блоке питания. Устройство предотвращает и стабилизирует чрезмерный ток, идущий по диодам в момент подключения.
  2. VD1, VD2, VD3, VD4 — выступают в качестве мостов-выпрямителей.
  3. L0, C0 — являются фильтрами передачи электрического тока и защищают от перепадов напряжения.
  4. R1, C1, VD8 и VD2 — представляют собой цепь преобразователей, использующихся при запуске. В качестве зарядки конденсатора C1 используется первый резистор (R1). Как только конденсатор пробивает динистор (VD2), он и транзистор раскрываются, в результате чего начинается автоколебание в схеме. Далее прямоугольный импульс посылается на диодный катод (VD8). Возникает минусовой показатель, перекрывающий второй динистор.
  5. R2, C11, C8 — облегчают начало работы преобразователей.
  6. R7, R8 — оптимизируют закрытие транзисторов.
  7. R6, R5 — образуют границы для электротока на транзисторах.
  8. R4, R3 — используются в качестве предохранителей при скачках напряжения в транзисторах.
  9. VD7 VD6 — защищают транзисторы БП от возвратного тока.
  10. TV1 — является обратным коммуникативным трансформатором.
  11. L5 — балластный дроссель.
  12. C4, C6 — выступают как разделительные конденсаторы. Делят все напряжение на две части.
  13. TV2 — трансформатор импульсного типа.
  14. VD14, VD15 — импульсные диоды.
  15. C9, C10 — фильтры-конденсаторы.

Обратите внимание! На схеме ниже красным цветом отмечены компоненты, которые нужно удалить при переделывании блока. Точки А-А объединяют перемычкой.

Только продуманный подбор отдельных элементов и правильная их установка позволит создать эффективно и надежно работающий блок питания.

Отличия лампы от импульсного блока

Схема лампы-экономки во многом напоминает строение импульсного блока питания. Именно поэтому изготовить импульсный БП несложно. Чтобы переделать устройство, понадобятся перемычка и дополнительный трансформатор, который станет выдавать импульсы. Трансформатор должен иметь выпрямитель.

Чтобы сделать БП более легким, удаляется стеклянная люминесцентная лампочка. Параметр мощности ограничивается наибольшей пропускной способностью транзисторов и размерами охлаждающих элементов. Для повышения мощности необходимо намотать дополнительную обмотку на дроссель.

Переделка блока

Прежде чем начинать переделку БП, необходимо выбрать выходную мощность тока. От этого показателя зависит степень модернизации системы. Если мощность будет находиться в пределах 20-30 Вт, не понадобятся глубокие изменения в схеме. Если же запланирована мощность свыше 50 Вт, модернизация нужна более системная.

Обратите внимание! На выходе из БП будет постоянное напряжение. Получение переменного напряжения на частоте 50 Гц не представляется возможным.

Определение мощности

Вычисление мощности осуществляется согласно формуле:

В качестве примера рассмотрим ситуацию с блоком питания, имеющим следующие характеристики:

  • напряжение — 12 В;
  • сила тока — 2 А.

P = 2 × 12 = 24 Вт.

Конечный параметр мощности будет больше — примерно 26 Вт, что позволяет учесть возможные перегрузки. Таким образом, для создания блока питания потребуется достаточно незначительное вмешательство в схему стандартной эконом-лампы на 25 Вт.

Новые компоненты

На схеме, представленной далее, показан порядок добавления новых деталей. Все они обозначены красным цветом.

В число новых электронных компонентов входят:

  • диодный мост VD14-VD17;
  • 2 конденсатора C9 и C10;
  • обмотка на балластном дросселе (L5), количество витков которой определяется эмпирически.

Дополнительная обмотка выполняет еще одну важную функцию — является разделяющим трансформатором и защищает от проникновения напряжения на выходы ИБП.

Чтобы вычислить нужное количество витков в дополнительной обмотке, выполняются такие действия:

  1. Временно наносим обмотку на дроссель (приблизительно 10 витков провода).
  2. Стыкуем обмотку с сопротивлением нагрузки (мощность от 30 Вт и сопротивление 5-6 Ом).
  3. Подключаемся к сети и делаем замер напряжения при нагрузочном сопротивлении.
  4. Полученный результат делим на число витков и узнаем, сколько вольт приходится на каждый виток.
  5. Выясняем нужное количество витков для постоянной обмотки.

Более подробно порядок расчета показан ниже.

Для вычисления нужного количества витков планируемое напряжение для блока делим на напряжение одного витка. В результате получаем число витков. К итоговому результату рекомендуется прибавить 5-10 %, что позволит иметь определенный запас.

Не стоит забывать, что оригинальная дроссельная обмотка находится под сетевым напряжением. Если нужно намотать на нее новый слой обмотки, позаботьтесь о межобмоточном изоляционном слое. Особенно важно соблюдать данное правило, когда наносится провод типа ПЭЛ в эмалевой изоляции. В качестве межобмоточного изоляционного слоя подойдет политетрафторэтиленовая лента (толщина 0,2 миллиметра), которая позволит повысить плотность резьбовых соединений. Такую ленту используют сантехники.

Обратите внимание! Мощность в блоке ограничивается габаритной мощностью задействованного трансформатора, а также максимально возможным током транзисторов.

Самостоятельное изготовление блока питания

ИБП можно изготовить своими руками. Для этого понадобятся небольшие изменения в перемычке электронного дросселя. Далее выполняется подключение к импульсному трансформатору и выпрямителю. Отдельные элементы схемы удаляются ввиду их ненужности.

Если блок питания не слишком высокомощный (до 20 Вт), трансформатор устанавливать необязательно. Хватит нескольких витков проводника, намотанных на магнитопровод, расположенный на балласте лампочки. Однако осуществить эту операцию можно только при наличии достаточного места под обмотку. Для нее подходит, к примеру, проводник типа МГТФ с фторопластовым изоляционным слоем.

Провода обычно нужно не так много, поскольку практически весь просвет магнитопровода отдается изоляции. Именно этот фактор ограничивает мощность таких блоков. Для увеличения мощности потребуется трансформатор импульсного типа.

Импульсный трансформатор

Отличительной характеристикой такой разновидности ИИП (импульсного источника питания) считается возможность его подстраивания под характеристики трансформатора. Кроме того, в системе нет цепи обратной связи. Схема подключения такова, что в особенно точных подсчетах параметров трансформатора нет необходимости. Даже если будет допущена грубая ошибка при расчетах, источник бесперебойного питания скорее всего будет функционировать.

Импульсный трансформатор создается на основе дросселя, на который накладывается вторичная обмотка. В качестве таковой используется лакированный медный провод.

Межобмоточный изоляционный слой чаще всего выполнен из бумаги. В некоторых случаях на обмотку нанесена синтетическая пленка. Однако даже в этом случае следует дополнительно обезопаситься и намотать 3-4 слоя специального электрозащитного картона. В крайнем случае используется бумага толщиной от 0,1 миллиметра. Медный провод накладывается только после того, как предусмотрена данная мера безопасности.

Что касается диаметра проводника, он должен быть максимально возможным. Количество витков во вторичной обмотке невелико, поэтому подходящий диаметр обычно выбирают методом проб и ошибок.

Выпрямитель

Чтобы не допустить насыщения магнитопровода в источнике бесперебойного питания, используют исключительно двухполупериодные выходные выпрямители. Для импульсного трансформатора, работающего на уменьшение напряжения, оптимальной считается схема с нулевой отметкой. Однако для нее нужно изготовить две абсолютно симметричные вторичные обмотки.

Для импульсного источника бесперебойного питания не подойдет обычный выпрямитель, функционирующий согласно схеме диодного моста (на кремниевых диодах). Дело в том, что на каждые 100 Вт транспортируемой мощности потери составят не менее 32 Вт. Если же изготавливать выпрямитель из мощных импульсных диодов, затраты будут велики.

Наладка источника бесперебойного питания

Когда собран блок питания, остается присоединить его к наибольшей нагрузке, чтобы проверить — не перегреваются ли транзисторы и трансформатор. Температурный максимум для трансформатора — 65 градусов, а для транзисторов — 40 градусов. Если трансформатор чересчур нагревается, нужно взять проводник с большим сечением или же увеличить габаритную мощность магнитопровода.

Перечисленные действия можно выполнить одновременно. Для трансформаторов из дроссельных балансов нарастить сечение проводника вероятнее всего не удастся. В этом случае единственный вариант — сокращение нагрузки.

ИБП высокой мощности

В некоторых случаях стандартной мощности балласта не хватает. В качестве примера приведем такую ситуацию: есть лампа мощностью 24 Вт и необходим ИБП для зарядки с характеристиками 12 B/8 A.

Для реализации схемы понадобится неиспользуемый компьютерный БП. Из блока достаем силовой трансформатор вместе с цепью R4C8. Данная цепочка защищает силовые транзисторы от чрезмерного напряжения. Силовой трансформатор соединяем с электронным балластом. В этой ситуации трансформатор заменяет дроссель. Ниже изображена схема сборки источника бесперебойного питания, основанная на лампочке-экономке.

Из практики известно, что данная разновидность блоков дает возможность получать до 45 Вт мощности. Нагревание транзисторов находится в рамках нормы, не превышая 50 градусов. Чтобы полностью исключить перегревание, рекомендуется вмонтировать в транзисторные базы трансформатор с большим сечением сердечника. Транзисторы ставят непосредственно на радиатор.

Потенциальные ошибки

Не рекомендуется использовать как выходной выпрямитель стандартный диодный мост на низких частотах. Особенно нежелательно это делать, если источник бесперебойного питания отличается высокой мощностью.

Нет смысла упрощать схему, накладывая базовые обмотки непосредственно на силовой трансформатор. В случае отсутствия нагрузки возникнут немалые потери, поскольку в транзисторные базы станет поступать ток большой величины.

Если используется трансформатор с возрастанием тока нагрузки, повысится и ток в транзисторных базах. Эмпирически установлено, что после того, как показатель нагрузки доходит до 75 Вт, в магнитопроводе наступает насыщение. Результатом этого является снижение качества транзисторов и их чрезмерный нагрев. Чтобы не допустить такого развития событий, рекомендуется самостоятельно обмотать трансформатор, используя большее сечение сердечника. Также допускается складывание вместе двух колец. Еще один вариант состоит в использовании большего диаметра проводника.

Базовый трансформатор, выступающий в качестве промежуточного звена, можно удалить из схемы. С этой целью токовый трансформатор присоединяют к выделенной обмотке силового трансформатора. Делается это с использованием высокомощного резистора на основе схемы обратной коммуникации. Минусом такого подхода является постоянное функционирование трансформатора тока в условиях насыщения.

Недопустимо подключение трансформатора вместе с дросселем (находится в преобразователе балласта). В противном случае из-за снижения общей индуктивности возрастет частота ИБП. Следствием этого станут потери в трансформаторе и чрезмерный нагрев транзистора выпрямителя на выходе.

Нельзя забывать о высокой отзывчивости диодов к повышенным показателям обратного напряжения и тока. К примеру, если поставить в схему на 12 вольт 6-вольтовый диод, данный элемент быстро придет в негодность.

Не следует менять транзисторы и диоды на низкокачественные электронные компоненты. Рабочие характеристики элементной базы российского производства оставляют желать лучшего, и результатом замены станет снижение функциональности источника бесперебойного питания.

Ссылка на основную публикацию